Store, Forget, and Check: Using Algebraic Signatures to Clek Remotely
Administered Storage

Thomas Schwarz, S.J. Ethan L. Miller
Department of Computer Engineering Storage Systems Rés€anter
Santa Clara University University of California at SantaCr
tischwarz@scu.edu elm@cs.ucsc.edu
Abstract data against alteration, data loss due to node unavailabili

and thefree rider problem. In this paper, we introduce new

The emerging use of the Internet for remote storage andtechniques based on algebraic signatures that allow a “data
backup has led to the problem of verifying that storage sites origination site” to verify that a a remote site is storingala
in a distributed system indeed store the data; this must of- correctly, or whether a number of sites that collectivetyst
ten be done in the absence of knowledge of what the datea collection of objects is doing so correctly. Our scheme
should be. We use m erasure-correcting coding to safe- does not need the original data for its check, and only two
guard the stored data and use algebraic signatures—hashsmall messages need be exchanged for each check. Both of
functions with algebraic properties—for verification. Our these properties should be attractive to designers of emot
scheme primarily utilizes one such algebraic property-tak storage schemes.
ing a signature of parity gives the same result as taking the ~ As peer-to-peer technology has matured, a number
parity of the signatures. To make our scheme collusion- of systems such as Oceanstore [18], Intermemory [13],
resistant, we blind data and parity by XORing them with Ivy [27], PAST [32], Starfish [12], FarSite [1] have been
a pseudo-random stream. Our scheme has three advanbuilt to utilize remote data storage. To protect against fai
tages over existing techniques. First, it uses only small ure, this data is stored redundantly using either purecapli
messages for verification, an attractive property in a P2P tion orm/nerasure coding. Similarly, Lillibridgest al.[19]
setting where the storing peers often only have a small up-propose a scheme where participants mutually store each
stream pipe. Second, it allows verification of challenges other's backup data. All these schemes store data on sites
across random data without the need for the challenger to that cannot be trusted. In addition to peer unavailability,
compare against the original data. Third, it is highly resis they must face the problem &ke riders Free riders only
tant to coordinated attempts to undetectably modify data. pretend to store others’ data and thus enjoy the benefits of
These signature techniques are very fast, running at tens toremote storage of their data without incurring any costs of
hundreds of megabytes per second. Because of these progheir own. Our approach can be used to address the free
erties, the use of algebraic signatures will permit the con- rider problem as well as the more general problem of invol-
struction of large-scale distributed storage systemsiichvh untary data loss or generic data corruption by using a system
large amounts of storage can be verified with minimal net- of challenges and responses. The naive algorithm requests
work bandwidth. random blocks of data from the storage site, verifying them
against the locally-stored data. This is particularly easy
a remote back-up scheme, since the original of the data is
still available, but becomes quite difficult in remote styggra
systems where the original is not retained. DOLR and other
P2P storage systems that use redundancy in storage face an

As the Internet has increased in speed and bandwidth additional problem of assuring that all data reflects theesam
remote storage of data over the network has become feastate. While stale data in a replicated system might still be
sible. Peer-to-peer (P2P) storage systems, especiallg tho useful, stale parity data in a scheme based on erasure coding
based on the so-called Distributed Object Location and Re-usually prevents the reconstruction of the applicatioa dat
trieval (DOLR) systems [11] such as Oceanstore [18] are ancase of need.
important class of such systems. Systems like these face a In a peer-to-peer system, nodes might not have a high
number of challenges such as data privacy, protection of thebandwidth connection; furthermore, many such nodes, in-

1. Introduction

This paper was published in tiegoceedings of the 26th International Conference on Oistied Computing Systems (ICDCS
2006) Lisboa, Portugal, July 2006.

cluding those in homes, have an asymmetric connectiontha?. Related Work
limits uploads but has ample download capacity. A peer
with such a connection can still store archival data that has
little likelihood to be read, albeit storing such data skaw
naive challenge scheme, however, will regularly use tie na
row upstream path and thus lead to noticeable performanc
losses.

Using hashes or signatures to condense the contents of

stored data blocks into a few bytes for comparison pur-
oses is a generic technique that has been used for a long

ime. The particular formula for the single symbol signa-
ture is similar to the one that was used by Harrison [15]

An “ideal” versatile challenge-response scheme shouldfor pattern searches. Rabin used the same type of for-
use only small challenges and responses. It should allow thenula for fingerprinting [28] and later analyzed it with Karp
challenger to test unpredictably so that the responderatann for remote pattern matching [17]. In another context, the
just simply precompute and store all challenges instead ofcalculation of a supersignature from page signatures used
the data. It should be able to detect changes in the storedor file comparison was used by Schwarz, Bowdidge, and
data and in particular should discover the most frequert dat Burkhard [34] and further expended and analyzed by Litwin
corruptions, such as very minute changes or permutation ofand Schwarz [22] for use in Scalable Distributed Data
blocks. Finally, it should be able to check whether parity in Structures. Broderet al. use fingerprinting and a tech-
a storage scheme using erasure correcting codes is coherenique called shingling to measure the difference of docu-
with the data without regenerating the parity data from the ments [5, 6].
application data. There are many schemes that make extensive use of the

Our scheme fulfills all these criteria as long as the era- INtérnet for wide-area storage. For example, Lillibridge,
sure correcting code is calculated using only XOR oper- - Propose a scheme to back up user data over the Inter-
ations; such codes include X-codes [35], EvenOdd [2, 3], "€t [19]. They verify the honesty of the storage providers
row-diagonal parity [9], and linear codes over a Galois field PY @ simple challenge-response scheme, where the data
such as the popular Reed-Solomon codes [24]. Our signaoWner asks the storer to retrieve a randomly chosen block
tures arealgebraic signature§22, 33]—hashes or check- (0 the owner. Other peer-to-peer storage systems, esecial
sums with algebraic properties. These are sometimes calledh0Se based on Distributed Object Location and Retrieval
“Rabinesque,” after Michael Rabin who used a similar for- (POLR) [11] can similarly benefit from the algorithms we
mula in the Karp-Rabin pattern matching algorithm and an- provide to check remotely stored data using techniques such

other similar formula to identify similarities between doc @S those proposed by Caronni and Waldvogel [7].
ments. OceansStore [18] uses anonymity of the data owner to

protect the data as well as periodic checks by Oceanstore
itself that all data is still available. It uses erasure eotr
‘ing codes ifn/n codes with relatively high values fon, n,

)) 2 . andr = n/m) to protect the data against site unavailabil-
security, the data or parity can be "blinded” (encrypted) by ity and failure, and performs checks to ensure that all data

XORing it with .W'th a pseudo-random stream. Both the is accessible. It protects against malicious deletion by us
erasure-correcting code and the pseudo-random stream ca]rr1|g global sweepin which the data owners sweep through

be easily regenerated by anyone knowing a secret. When Qata under their control. The correctness of the data is ver-

system wants to verify the data, it asks the storing sites Oified by checking every byte of the data; this requires that
each return a signature calculated over a specified part 011 '

he d Th . hen d ; | IOceanStore either trust the remote nodes to correctlyyerif
the data. The requesting system can then determine, Solely,, i jntormation or that the remote nodes return the data

based on the secret and the returned signatures, whether th§nd checksums to a trusted node for verification. Intermem-
returned values can reflect valid data. A random chosen an-

h bability ot of bei ¢ wherbis th ory [13] is another large-scale, distributed, fault-taker
Swer nas a probabiiity of = 0T being correct, whereis the archival system that encrypts and erasure-encodes data and

Iengt_h of the answer in bits. Thl_ls’ with just a few 'Ta”dom stores them on untrusted sites. PAST [32] and CFS [10]
queries, our techmques can verl_fy that a remote site or S€hre also global-scale storage systems, but of read-ordy dat
of sites is indeed likely to be storing data correctly. protected by replication. lvy [27] is a read-write P2P file

In this paper, we first discuss previous work in DOLR system in which malicious failures are discovered “after th
systems, focusing on techniques used to verify that remotefact;” the use of our techniques might enable such a system
data is correctly stored. We then describe the algebraic sig to proactively discover failures. Starfish [12] replicadesa
natures that our approach uses. Next, we describe the proitems three-fold and uses a write quorum of two of the three
tocols that we use to request and verify signatures, follbwe sites to update them, though the parameters can of course be
by implementation and performance results. We concludegeneralized. Like OceanStore, PASIS [14] usgs codes
with future directions for our work. to store data, but it also uses/n codes to provide some

Our techniques work for systems that store data redun-
dantly at a remote site by adding some parity data, gener
ated by a linear erasure-correctimgn code. For added

level of security. Unlike more recent systems, first gener-, and is itself a single symbol. Sometimes, it is useful to
ation file sharing systems such as Napster, Gnutella [31],have slightly larger signatures, as can be obtained by con-
and Freenet [8] also store data remotely, but tend to notcatenating several signatures:

pay attention to the validation and availability of the data

LOCKSS [25] replicates data among multiple library sites Sig(n,a) = (Sigy0,Sigy1,SiGg2, - . - Siggn-1)

and uses voting techniques based on the exchange of cryp-

tographically strong signatures of each library’s copy of a sig,, for certaina can detect any changes of up to
particular file. This technique works in LOCKSS because n symbols [22]. The simple as well as the concatenated
each library must keep a copy of the file, allowing it to ver- signature are linear in the string over which they are
ify the cryptographic hash against its own copy. Becausecalculated. An interesting consequence of linearity i$ tha
these P2P systems store data on remote untrusted nodesie can combine signature calculation with blinding the
they could all benefit from the use of algebraic signatures data by XORing the data with a pseudo-random string.

for remote storage verification. Basically, if X is the plaintext and/ the pseudo-random
string, then sig(X @ Y) = sig, (X) @ sig,(Y). Signatures
3. Random Parity and Signatures interact in a similar way with various erasure and error

correcting codes that use only the XOR operation, as do
Hellerstein’s proposal [16], EvenOdd[2], row-diagonal
parity [9], and convolutional array codes [3]. More impor-
tantly, linearm out of n codes also have this property. More
recisely, assume that we have an erasure correcting code
hat calculateg parity container®, ... Py from themdata
bucketsD4,D»,...Dm as P; = [Jj(D1,D2...Dy). Then

We propose to use a conjunction of algebraic
signatures—small strings calculated from substrings of
stored data in a way that has exploitable algebraic
properties—and redundant storage generated with the hel
of linear, maximum distance separable error control codes.
We use the same mathematical structure, a Galois fleldsiga (i(Dyy...Dm)) = O (sigg(D1);...,Sig (D).

7 (21 '
g(fn(zc)r)(jtez()r(:sf:;elr)gtt: .on the data, we treat it asastream’A‘nOther way ~of putting this property is that
' (sigy (D1),...Sigy (Dm),Sig, (P1)...sig,(Px)) is a code

(Jl;?]/cm_bcélsotrh?t_arle(sb|th;2nzgs d(i)f];;?gr?tfhswrlrgggs% ?Irrzlilr;e word in the code. The proof of this and other properties can
N L y be found elsewhere [22, 33].

elements of a Galois fiel#.# (2") in which we can add, Th lqebraic sianat led often Rabi
multiply, divide by, and subtract with the same rules as are ese algebraic signalures are called often Rabinesque
after Michael Rabin, who used a formula of similar type

valid for these operations in the better known field of real o define f ints [17. 281 | il i d mak
numbers. Ig.Z(2"), addition is the same as subtraction 0 detine fingerprints [17, 28] In a simrar Seting and make
use of their algebraic properties for what is now known as

and both are the same as the XOR operation. The zero inh K Rabi hi loorith d for fi
this field is the string with only zeroe®(g, 0000 0000 '€ Karp-Rabin pattern matching aigorithm and for finger-

for f = 8). The definition and implementation of multipli- printing. The same formula was also used for fast file com-

cation is somewhat more involved, but there are standardIoarison [34]. Fingerprinting and a technique called shin-
implementation techniques [24] for’it gling can also be used to measure the difference of doc-

The most important property of algebraic signatures for uments [5,6]. Our use of algebraic signatures e.ssentially
our purposes is that calculating parity and taking a sigeatu compresses the contents of a large portion of data into a very

commute. In other words, the algebraic signature of a paritysmaII entity that changes if the data is changed a little bit.

container can be calculated solely using the signaturéseof t In th|_s way, it is similar to “cryptographically secure” tas
data containers. This is true as long as we use the same fieiinctions such as MD5, SHA-1, and SHA-256, though al-
in calculating the signature and the parity, and the erasure.ge_br"leC S|gnatu_res are not cryptographlcglly secure Isecau
correcting code is a linear code. Such codes include the't IS €asy to dgllb_erately const_ruct two strings that haee t.h
simple parity code that calculates parity as the XOR of data.5aM€ algebraic S|gna_ture. U;lng a SHA-type hash function
The remainder of this section describes algebraic sigestur allows for the comparison of files with very small messages,

in detail and how the parity codes are generated. but only if the local sys'Fem malnta_lr_ls a copy of the objects
whose remote storage is to be verified.

3.1. Algebraic Signature Definition . _
3.2. Generating Random Linear Codes
An algebraic signature of a string (of symbolg) X,
...Xn—1 is simply defined by Our proposal includes security in its more ambitious
variant, described in Sections 4.2 and 4.3, from custom-
tailoring the parity generating code to the stored objea. W

N-1
H v
si X1, XNC1) =) Xy O)3 ;
Oa (X0 X0, Xn-1) vZo v use a systematic, linear erasure correcting code [24] over a

Galois field such a&.7 (28) or 4.7 (2'6) in a fairly stan- For our starting point, we use Vandermonde matrices
dard way. We createn data containers of approximately

equal size; then containers can be filled with parts of the 1 1 1
same object or unrelated objects. To this, we kgdrity ay a an
containers of the same size as the data containers using the Vay. .oy = ay? a? an’

algorithm described in this section. We refer to the collec-
tion of n = m+ k data and parity containers asediability
group. If a single object is distributed among the containers,
this is_ similar to a variant of Rabin’s Information Dispérsa 11hase have Property 1 if th, ay, ...aq are all different.
Algorithm [29]. Thus, there aré2f)(2f —1)... (2" —n+1) ways to gener-
Our codes are defined bynax n generator matrixG that ate such a Vandermonde matrix o## (27). In lieu of a
has the following two properties: (1) Evenyx msubma- Vandermonde matrix, we can use iarx n Cauchy matrix
trix of G (formed by selectinghcolumns) ofG is invertible. C = (ci;j) in whichg¢; j = a'lej This matrix has Property 1
(2) The firstm columns ofG is the identity matrix. LeD1, if the m+n parametersy, ay, ...,am, b1, by, ..., by are
Dy, ...Dm be the contents of the data containers written as a|| pairwise different. This condition imposes a limit oreth
a column vector with symbols as the coefficients. Then number of parameters of tne/n code, namelyn+n < 2f
fc:r Cauchy matrices with coefficients id.# (2") andn <
2" for Vandermonde matrices. In both cases, the contents
(B1,B2,..Dm) G = (D1, Dz, .- Dim, P1, Pa-. - Py of the parity matrix (P j)—the right half ofGa, a, .a;—
can be given as a complex function of the parameters, but
defines the contenty, Py, ... Py of thek parity containers, in practice, calculating the parity matrix with the Gaussia
again as a column vector of symbols. Property 1 insures thatelimination algorithm is simpler and faster. The algorithm
the multiplication reproduces the data container columns.starts by selecting the coefficient in the first row and col-
Property 2 means that given ampof then containersinthe umn as a pivot. It multiplies the first row in order to turn the
reliability group, we can solve a linear equation to recal- pivot into 1. It then adds a multiple of the first row to gen-
culate the remaining containersj. e, our code is am/n erate zeroes elsewhere in the first column. It then proceeds
erasure correcting code. As such, it also has error correctrow by row, selecting the coefficients in the main diagonal
ing capabilities: given alh containers, we can identify one as pivots. It turns out that because we start with a matrix

a™l a,ml L. gl

or a few altered containers and repair them. with Property 1, none of the pivots will ever be zero. This
As mentioned earlier, we must be able to generate dif- leads to a slightly streamlined generator matrix genegatin
ferent codes. To do this, we first define a familyrof n algorithm. In consequence, the total number of arithmetic

matrices that has Property 1. Next, we observe that elemen®Perations is always less than or equal e

tary row transformations (adding a multiple of one row to ~ The generation of parity data themselves is also reason-
another row, exchanging two rows, and multiplying a row ably efficient. As with all linear codes ovetZ (21), parity

with a non-zero Galois field element) leave Property 1 in- calculation involves multiplying data symbols by the matri
tact. Using these transformations, we can use the Gaus¢oefficientspij and XOR operations. There are erasure cor-
sian elimination algorithm (for linear equations) in order ecting codes that only use XOR operations [23], but as it

to transform the matrix into a generator matrix in the right s out, extensive use of look-up tables for matrix multi-
form plication gives competitive parity generation performanc

This type of code has been used for LH*RS [20, 21] and
gave reasonable performance times.

The number of possible parity matrices is quite large.
There are 2 /(2 —n)! possible ways to generate a se-
Coo .o : . : quence ofn different values among thef Zymbols in the
0 0 -+ 1 Pn1 -+ Pnk Galois field. Even if we use the ting.# (28) and generate

' ’ only one parity chunk, then there arg-21 possible parity
encodings. If we only generate one parity chunk, then we

In addition to elementary row transformations, multiply- can generate the parity mati hocas any single column
ing any column of a matrix with a non-zero Galois field matrix with non-zero coefficients. This gives us-21 pos-
element also retains Property 1. Thus, if required, we cansibilities for each parity matrix coefficient. In additioly
additionally multiply the lask columns by a non-zero Ga- multiplying the columns, we can increase the possibilities
lois field element in order to create even more generatorfurther. Again, for security considerations, one has tqkee
matrices. in mind that any false guess by an attacker leads to a false

0 -.- 0 |51’1 |51’k
1 - 0 Py - Py

answer to a challenge, and that, in the secure versions of 1. Store data across distributed systems
our protocol, a malicious storage site cannot easily check

the correctness of its made-up answers. -
—_— DO D1 D2 PO
4. Signature-Based Challenges |
Data origination sites typically want to check whether A A A A

remote sites actually store the data entrusted to them. Of-

ten, origination sites maintain their own copy of the data. 2. Challenge sites to prove they hold the data

For such situations, Lillibridgeet al. [19] propose to ask (‘

the storage site to send a small, randomly-selected chunk of -

stored data to verify that the remote site is storing all ef th —— g Dy D, D, Po
data that has been sent to it. By selecting the start and end

locations randomly, the test ensures that the storageidite d 45 R 7y 7y i
not simply precompute and store signatures and discard the

actual data. This approach has three drawbacks, however. 3. Sites respond with signatures of requested data
First, the storage site must return the entire range of data, .
quiring a lot of upstream bandwidth. Second, this approach -
reveals the data; Lillibridgest al. note that a malicious user)
could retrieve its data in this way. Third, the originatiriig s

must retain the original data for comparison, though this is D, D, D, P,
not an issue if the originating site can aakof the storage

sites for the same range of their storage. @ @ @ @

4.1. Basic Algorithm 4. Data originator (challenger) verifies the signatures

e

We improve on existing approaches that require all of the - Verify: Parity(SIG(D), SIG(D). SIG(D,)) == SIG(P,)
data to be returned by asking the storing site to simply cal- ==
culate and return an algebraic signature for a range chosen
by the requester rather than the data that it covers. The orig
inating site can verify that data has been stored corregtly b
combining this signature with signatures from other stor- Figure 1. Basic storage, signature request
ing sites. Since the parity of the signatures is the same as and verification protocol.
the signature of the parity, the originating site can check
the signatures and, if there is sufficient redundancy in the]] . o
error-correcting code, even identify the site that present data. This only benefits the cheating storagg site if th.e an-
an incorrect signature. Unlike previous approaches, theseSWers take less place than the actual data itself. This can
signature calculations do not require that the originating P& overcome by using a simple challenge request that sup-
site retain the data for comparison; the signatures aloire su Plies (x,n,s) for a given block, or set of blocks, where
fice for verification. Additionally, this approach reduchet IS the starting offsem is the number of samples, assds
amount of message data that must be sent and reveals littiéh€ stride (all values in words). The storage site then cal-
information about the original data, allowing a third pay ~ culatessigla](dy, dxrs, Oxtzs, - - -, Oy (n-1)s), Wheredy is the
conduct the verification without fear of compromising data. k™ word of the block or set of blocks. Since the number
This approach is shown in Figure 1. of possible signatures is much higher than the actual size

This simple procedure withstands two basic attacks. of the block, the storage site saves space by doing the right
First, each response reveals some data and an attacker reathing and simply storing the data rather than potential sig-
ing network traffic might be able to reconstruct the data, natures. Note that, if needed, the number of signatures can
assuming that neither neither data nor messages are erPe further increased by also specifying thgparameter in
crypted. As we will see, even if we do not use encryp- the signature challenge.
tion, the information leakage is rather small because sig- Using the above scheme, the data originator can eas-
natures are small and stored objects large. Second, andy check that all of the remote data covered by the
more importantly, a storing site could precompute answerssignatures has been stored correctly. The data origina-
to all possible challenges and store them instead of thetor, or anyone else who gets the signatures, can com-

puteparity[sig(do), . .. ,sig(dk_1)] and compare the resultto data originator to safeguard the signature verification pro
sig(parity), which was received from the system storing the cess with a minimum of storage overhead.
parity for do, ...,dgx_1. Since parity calculations and alge- In our storage scheme, we store data in containers of
braic signature operations commute, as discussed in Secequal size. We form a reliability group out of of these
tion 3, the two results should be equal. If they are not containers to which we add an additiokadarity chunks of
equal, and there is sufficient error correcting information the same size, so that the group contairsm+ k chunks.
itis even possible to identify the signature that is incotre This configuration can tolerateunavailable sites by recal-
Note that anyone can perform this check, not just the dataculating any missing data chunks from a totahotiata or
originator, since the verification does not require origina parity chunk. It can also find up ttk/2| chunks in er-
data. In addition, the verification does not release much in-ror and correct them. Even if we are not interested in era-
formation about the original data, since only a few bytes of sure protection, we still generate some parity chunks to en-
signature information are returned from each storage site.able remote storage checking. The code used for the gen-
This prevents a malicious system from using this techniqueeration of the parity chunks uses the same Galois field as
to retrieve data surreptitiously—it would take thousantls o our signatures, but is different for each reliability grouip
randomly-selected queries to retrieve sufficient sigrestur s always a linearm/n code, and is described in detail in
to be able to solve for the original data. If necessary, g®ra Section 3.2. We envision reasonably large chunks, so that
sites can refuse to answer “clustered” signature querés th the overhead of generating the codes is small. For exam-
might be used to derive the underlying data. Alternatively, ple, we can derive the code from a secure hash function
storage sites may refuse to provide signatures for fewer tha h(objectid, serversecretuseparamete, whereobjectid
n of data words; recovery of the underlying data will require jdentifies the reliability group, the server secret is used t
O(n) signatures. prevent remote sites from deriving the same function, and
The technigue we describe—calculating signatures on auseparametervaries for each use of the hash function, as
portion of the data and returning just the signatures—can bedescribed below.
done using more conventional hash algorithms such as MD5 If enough of the storage sites collaborate, they can foil
and SHA-1. However, this approach suffers from a signifi- our scheme by first calculating the parity code, which
cant problem: the system requesting the signature must eiamounts to solving a system of linear equations. To do so,
ther keep the original data or precompute and store the sigthey use aboun-k symbols from the data and parity chunks
nature values for any queries it plans to make. For example to solve for them- k coefficients of the generator matrix,
a system might decide to precompute the hash values foras described in Section 3.2. An initial, and rather difficult
1,000 queries to each of twenty systems storing either datechallenge for the attackers would be to identify the data and
or parity. This approach could be done without algebraic parity chunks that make up a reliability group. A “secu-
signatures. However, if the 1,000 queries are exhaustedrity by obscurity” mindset would consider the difficulties i
perhaps after a few months of use, the storage sites couldinding related storage blocks sufficient protection, but we
simply remember the results of the previous 1,000 queriescan do better with very little overhead.
and discard the actual data, knowing that they would not 14 prevent multiple sites from collaborating to fabri-

receive any “new” queries for which they would have to re- cate consistent data and the signatures that go with them,
trieve data. Our approach has no such limitation becaus&ye yse two techniques: randomly-generated transformation
the _results Qf any signature query can be ver|f|ed_mathe-matriCes for parity, and “blinding” the parity values usiag
matically, eliminating the need to precompute queries and yseydo-random stream of data. The latter transformation is
results. accomplished by using a stream-based encryption algorithm
such as RC4 with a seed derived from the hash function de-
scribed above. By blinding the parity information using a
pseudo-random stream, multiple sites cannot uncover the
parity code because they no longer have all of the values
The technique in Section 4.1, while it avoids the prob- needed for the set of linear equations. The transformation
lems inherent in existing approaches, still suffers from a functions must still be kept secret, however, since maligio
drawback: sites that collude can modify data or even makesites that knew the transformation function but not the en-
up signatures as long as they are internally consistent. Incryption stream could calculate the expected parity ansl thu
other words, a site receiving signatures can verify that therecover the stream values, allowing them to substitute new
parity matches the data, but it cannot tell whether all of the values. It is only the combination of encrypted parity and
sites colluded to provide fake signatures and then generate Secret parity matrices that prevents collusion.
parity for them. To address this shortcoming, we devel- The first step in generating parity under this scheme is
oped a modification of the original protocol that allows a to generate random parity matrices, as described in Sec-

4.2. Collusion Resistance

tion 3.2. These matrices are generated using the outpu#.3. Verifying Storage on a Single Server
of the hash function described above; each data chunk in
each “row” has its own parity matrix. The specific matrix Because the collusion-resistant technique described in
used for each chunk is thus a secret that the data originatoSection 4.2 cannot be broken by multiple entities, each of
knows, but that the storage sites do not know and have nowhich holds part of the data, it is also resistant to subwersi
way of solving for. Using these parity matrices, the orig- attempts from a single storage system. This property makes
inating site calculates thid" parity word in thejt" parity it attractive for storage verification for remote storags-sy
chunk: tems. Traditionally, remote storage on a single deviceris ve
ified in one of two ways. First, the remote storage system
- . - might return an entire chunk of data. If this data is stored
Pjk = Pojdox @ Prjd1k® - ©Fn-1,jdm-1k with appropriate protections [26,30], the originating-sys
tem can verify that the data was indeed stored and retrieved
correctly and not corrupted. However, this approach suf-
fers from the need to actually return the entire data chunk,
and is not appropriate for verifying large amounts of sterag
because of the network bandwidth required. Typically, the
entire chunk has to be retrieved because there is no way to
verify less than a full chunk. A second approach would be
to simply return the signature of a chunk rather than the
data itself. As described earlier, however, this approach
Verification of the parity in this approach is similar to only requires that the storage server keep the signatude, an
verification in the basic, insecure approach. As before, theprovides no guarantee that the underlying chunk is actually
data origination site sends a challenge of the fdxm, s) stored.
to each of the storage sites and has them return the alge- Algebraic signatures provide a third alternative that has
braic signature as before. However, the originating sitetmu the advantages described earlier: verification of a redtiv
now remove the blinding factor from the parity signature. large data chunk by randomly sampling the data that make
This is done by computing the signature of the values in the it up and returning the signature. Since the data is all dtore
pseudo-random stream selected(yn,s) and XORing it on the same device, there is little benefit to having multiple
with the parity signature. The result should be the parity of parity chunks; a single parity chunk is sufficient to allow
the data signatures. Since it is difficult to generate ondy th verification. A system that wants to stonedata chunks
desired values from the random stream without generatingcomputes parity across them as described in Section 4.2,
the other values, this approach typically requires that theand then stores the data chunks and single parity chunk
verifying system produce the entire pseudo-random streamon the one server. The overhead is thysland can be
from the start. By allowing the stream to restart every 4 KB very low if mis relatively large. Since all of the chunks are
or 8KB, this time can be reduced by allowing the stream to stored on the same servercould be kept large by breaking
be generated from the nearest block boundary. up any chunk inten equal size pieces and computing parity

. . . . across them.
Note that this techmque blinds -the parity, but stores the To verify that the storage server is maintaining the data
data unencrypted. It is also possible to store the data en-

crypted but leave the parity unencrypted, or to leave both chunks, the data originator can send(@m,s) request to .
: ; the storage server, which then computes and returns the sig-
the data and parity encrypted. If the data is to be stored en-

crypted, a data word stored dy @ r; 4, wherer 4 is the natures of the data chunks and parity chunk. These val-

KN word of the pseudo-random data stream for fHedata ues are returned to the data originator, which can verify the
A integrity of the randomly-selected sequence of data as de-
chunk. Parity is still calculated on the raw, unencrypted

data. This approach has nearly the same security as en§cr|bed in Section 4.2. As an added benéefit, the data origi-

. " ! nator can correct errors in a single chunk if there are media

crypting the parity; collaborating storage servers onlyeha L
errors on the storage system'’s disk.

the encrypted data, but they need the unencrypted values
as well as theé® matrices to construct valid parity. How- .
ever, when there are more parity chunks than data chunks. i®- Implementation and Performance Issues
would be possible to solve for the unencrypted data values;
essentially, this would involve usirlg> m cleartext parity We implemented a large number of different signature
chunks to reconstruah cleartext data chunks. In such a calculation algorithms to calculate compound signatufes o
situation, the parity chunks must be encrypted regardiess o size 4 B and of 8 B using underlying fields % (28) and
whether the data chunks are encrypted. 4.7 (2'6). We then tested them on two systems running

The parity chunk is then XORed with a pseudo-random
stream generated by RC4 or a similar algorithm, seeded
with a value derived from the above hash function; thus, the
value stored for the parity word above would pg @ rj i,
wherer | x is thek" value of the pseudo-random stream for
parity chunkj. If the chunks are large, it may be helpful to
reseed RC4 every 4 KB or 8 KB to make verification faster.

void MiltiplyByA pha(GFEl enent x) 8 B signature ove¥.Z (28) we multiply withar, a2, ... ab;

{) the first component signature only uses XORing. We can
if(x!=0) _ { save space and implement all multiplications by a power of

x = antilog[log[x]]+1]; a by successive look-ups to a single multiplication-doy-
} table. This strategy works reasonably well in the case of
return Xx; 4.7 (2'8), but results differ based on the cache sizes. For

} the smaller field4.7 (28), individual tables seem to be al-

most always better.

Figure 2. Explicit multiplication by ~ a method
using logarithms and antilogarithms An alternative is the use of logarithms and antiloga-

rithms. We pick ana that is aprimitive element. Ac-

))) cordingly, each Galois field elemept can be written as
Windows XP SP2: a desktop, with a 3 GHz Pentium 4 dual B = a' and the powei—uniquely determined between 0

processor with 512 MB memory, and a laptop witha2GHz 5,4 4 _ 1_is the logarithm of. Conversely,3 is the

Pentium 4 Centrino processor and 1 GB of memory. antilogarithm ofi. We can now exploit the properties of

For completeness sake, we describe in broad strokes thgygarithms to calculate generic products with a logarithm
best algorithms to calculate signatures. Recall that @4r si 54 antilogarithm table. Figure 5 gives the idea in pseudo-

nature consists of different component si_gnaturSes. For eX-code applied to multiplication witlr, which also extends
ample, if we calculate a 8B signature usifigr (2°) over 5 gther powers ofr. The test for zero can be avoided by
a (non-contiguous) substrir of a container, we actually gefining log0) to be a small, negative number and extend-

calculate in parallel ing the antilogarithm table accordingly. Often, the reisgit
. . . . variant is slightly faster.
(510, (B) 5ig (B),Sidy2(B) .., Sig7(B). Y
Here, the first signature, sitB), is the XOR of all the sym- Another technique for signature calculations uses a
bols inB. scheme invented by Broder [4], and is based on the most

We can of course calculate a component signaturebasic way of defining multiplication ity 7 (2") as poly-
sigyi (B) according to its definition. It is slightly faster to nomial multiplication modulo a generator polynomial. The
calculate signatures from the back, i.e. to calculatgPsiy ~ Multiplication by the unknowiX can then be performed by
_ 25;3 b - aN-1-V. We can now use a Homer scheme to a left shift and XOR_lng with an entity correspondmg to the
caiculate generator polynomial. We can identifiywith the unknown

so that multiplication bya consists of a left shift operation
sig (B°P) = (((blai +bp)al +bs..) aql +by 1) ol +by followed by an co_nditio_nal XOR. _It turns out that evalua_t-

ing the condition is quite expensive and that the resulting
Thus, we build the signature processing a symbol at a time.implementation can have terrible runtimes. Broder recog-
At each step, we multiply the current result withand then nized that one can perform several shift operations at once,
add the next symbol to it. Addition is done with XOR and consult a table that incorporates a number of decisions and
hence fast; thus, the problem is fast multiplicationdly use the table contents as the XOR-operand. The resulting

One simple possibility for implementing multiplication implementations in general have excellent run-times, even

by a is to use a table. This turns out to be efficient if the though, in contrast to the table method, we must also mul-
tables fit into the L1 caché, e, for 4.7 (28). For muli- tiply with X? and sometimes with® andX“ as well, since
plication with a in 4.7 (21), we break a 16 bit symbal we use compound signatures.
into the left and the right part of 8 bits each. Using shift
operations in C, we calculate them laf(s) = s> 8 and In our experiments, particular implementations of
right(s) = s&Oxff, respectively. We generate two tables Broder’s method were always the best, but were sometimes
with entries between 0 and Oxftleft andtright, defined equalled by table-based methods. Their speed came close

by tleft[i] = (i < 8) - a andtright[i] =i-a. Therefore, to just calculating the 4 B XOR checksum of the data. Cal-
o - s = tleft[left(s)] + tright[right(s)]. For example, ifs= culating a signature over 32 B in every 512 B block reached
Oxabcd, thereft(s) = Oxab,right(s) = Oxcd, tleft[Oxal = a throughput of over 900 MB/sec on the 2 GHz laptop and

0xab00 a, andtright[Oxcd = 0x00cd a. It turns outthat over 700 MB/sec on the desktop machine, falling to about
this “double table” method is somewhat faster than a sin- 40 MB/sec on both once data had to be accessed from the
gle multiplication table because both tables can now residedisk. Based on our experiments, the performance bottle-
in the L1 cache. However, we also need to optimize multi- neck for algebraic signatures is clearly the data transter r
plication by powers ofx. For example, if we calculate an between disk and memory.

6. Conclusions and Future Research well as the increased ability to do verification in such a
system. We are also developing a scheme that uses alge-
braic signatures to check on the consistency of replicated

In this paper, we introduced the use of algebraic sig- datab it miah b ol ider th ¢
natures to check on distributed data stored outside of the atabases. It might even be possible to consider the use o

owner’s control. Algebraic signatures offer two primary ad signatu_res asameans of concurrency controll, si_nce they_ can
vantages. First, algebraic signatures compress a largk blo detect inconsistencies between data and parity informatio

in a short byte string. The byte string can be made large Wh_|le algebraic signatures are unsuitable as crypto-
enough to make an accidental fit extremely unlikely. For 9raphically secure hash functions such as MDS5 or the SHA
example, a 32 bit signature will suffer a collision with prob family of secure checksums, they are ideally suited for use
ability 232 and a 64 bit signature with probability 2. in verifying remotely stored data in distributed systems.

This compression saves network bandwidth. Second, algeThe combination of low network bandwidth, reasonable

braic signatures interact well with linear error and erasur OMPutation load, and resistance to malicious modification
correcting codes. Thus, algebraic signatures may be used t§'ake algebraic signatures ideal for verifying that data en-
verify that the parity and the client data are coherentwitho rusted to remote storage systems is actually being main-

the need to obtain the entire data and parity. Furthermore 2ined. By allowing the verification of large amounts of

if the underlying code has error correcting capabilitibent stored data with m|n|_mal network impact, algebraic signa-
the signatures alone can diagnose which data is incorrectfures have the potential to enable very large-scale velgfiab

perhaps from an incorrectly performed update or a mali- distributed storage systems.
cious storage site.

We use these properties to verify remote storage in two Acknowledgments
different ways. If data is stored across a number of sites

using anm/n erasure correcting code, the use of a linear \we would like to thank the faculty and students of the

code to generate the= n —m parity chunks permits chal- gtorage Systems Research Center for their help and guid-
lenges based on algebraic signatures to check whether thgce. Support for this research was provided by SSRC

storage sites together store the same data. Using the errqpqystrial partners, including Engenio, Hewlett Packard,

correcting capacity of such a code, we can also determinelBM, Intel, Microsoft, Network Appliance, Rocksoft, Veri-
that one or a few sites which are in error. Second, and per-as and Yahoo.

haps more intriguing for a system such as OceanStore, we

can check whether a set of colluding sites or even a single

site accurately stores the data entrusted to it. We do so byReferences

breaking the object stored there into equal size data chunks

adding a few parity chunks to it, and blinding all the data [1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-

stored there by XORing with a pseudo-random stream. Our mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
scheme then allows issuing challenges that only a site that ~ and R. Wattenhofer. FARSITE: Federated, available, and
faithfully stores its data can answer correctly; it is proba reliable storage for an incompletely trusted environment.

In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSMpston, MA, Dec.
2002. USENIX.

bilistically impossible for a site that does not know the se-
crets to generate a coherent set of signatures. This allows
inexpensive verification of large amounts of data with rela- [2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVEN-

tively |0V‘_’ network commu_nicatic_)n costs. _ ODD: An efficient scheme for tolerating double disk failures
Our signature scheme is flexible enough to easily gener- in RAID architectures. IEEE Transactions on Computers
ate such a diversity of challenges that storing precomputed 44(2):192-202, 1995.

data instead of the data makes no sense to a cheating stor-[3] M. Blaum, P. G. Farrell, and H. C. A. van Tilborg. Array
age site. At the same time, each signature is small and codes. In V. S. Pless and W. C. Huffman, editddsnd-
thus reveals little information about the stored data, even book of Coding Theorwolume 2. North-Holland, Elsevier
if signatures are sent in cleartext. Furthermore, the signa Science, 1998.

ture generation process is fast, running at tens to hundreds [4] A- Z. Broder. Some applications of Rabin’s fingerprint-
of megabytes per second. Thus, this approach can permit ing meth_Od' In R. Capoc?”" A. D. Santis, and u. Vac-
the verification of very large quantities of remote storage gzrg;rif;/j't:r:Z’ngnﬁEf:fslge“:zggg: E;nggn;iit‘cg_s’
with minimal network bandwidth and acceptable amounts ' ' '

) . Verlag, 1993.
of computation at the.remote S't‘_a') [5] A.Z.Broder. On the resemblance and containment of docu-
We are currently implementing a simple peer-to-peer ments. InProceedings of Compression and Complexity of

storage system that uses algebraic signatures for verifica- Sequences (SEQUENCES '9pages 21-29. IEEE Com-
tion, and expect to measure the reduction in bandwidth as puter Society, 1998.

[6] A.Z.Broder, S. C. Glassman, M. S. Manasse, and G. Zweig

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Syntactic clustering of the web. IRroceedings of the 6th
International World Wide Web Conferengeages 391-404,
Santa Clara, California, United States, Apr. 1997.

G. Caronni and M. Waldvogel. Establishing trust in dis-
tributed storage providers. Iroceedings of the Third In-
ternational Conferences on Peer-to-Peer Computjpages
128-133. IEEE, Sept. 2003.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Scienc2009:46+,
2001.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-diagonal parity for double
disk failure correction. IfProceedings of the Third USENIX
Conference on File and Storage Technologies (FABdges
1-14, 2004.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |.-Sto
ica. Wide-area cooperative storage with CFS.Pceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)pages 202-215, Banff, Canada, Oct.
2001. ACM.

F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and &-St
ica. Towards a common API for structured peer-to-peer
overlays. InPeer-to-Peer Systems Il: Second International
Workshop, IPTPS 2003, Springer Lecture Notes in Com-
puter Science 2753ages 33-44, Berkeley, CA, USA, Feb.
2003.

E. Gabber, J. Fellin, M. Flaster, F. Gu, B. Hillyer, W.Ng,

B. Ozden, and E. Shriver. StarFish: Highly-available block
storage. IrProceedings of the Freenix Track: 2003 USENIX
Annual Technical Conferencpages 151-163, San Antonio,
TX, June 2003.

A. V. Goldberg and P. N. Yianilos. Towards and archival i
termemory. IPAdvances in Digital Libraries ADL'98yages
1-9, April 1998.

G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Re-
iter. Efficient Byzantine-tolerant erasure-coded storage
Proceedings of the 2004 International Conference on De-
pendable Systems and Networking (DSN 2004he 2004.

M. C. Harrison. Implementation of the substring test by
hashing. Communications of the ACM4(12):777 — 779,
December 1971.

L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and
D. A. Patterson. Coding techniques for handling failures in
large disk arraysAlgorithmicg 12:182—208, 1994.

R. M. Karp and M. O. Rabin. Efficient randomized pattern-

matching algorithmsIBM Journal of Research and Devel-
opment 31(2):249-260, Mar. 1987.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. Pnoceedings of the 9th
International Conference on Architectural Support for Pro
gramming Languages and Operating Systems (ASPLOS)
Cambridge, MA, Nov. 2000. ACM.

M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, ad

M. Isard. A cooperative Internet backup scheme.Pn-
ceedings of the 2003 USENIX Annual Technical Conference
pages 29-42, San Antonio, TX, 2003.

10

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

. [20] W. Litwin, R. Moussa, and T. Schwarz. LH*RS — a highly-

available scalable distributed data structu#&M Transac-
tions on Database Systen®9(3):769-811, 2005.

W. Litwin and T. Schwarz. LHgg A high-availability scal-
able distributed data structure using Reed Solomon codes.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Dafmges 237-248, Dal-
las, TX, May 2000. ACM.

W. Litwin and T. Schwarz. Algebraic signatures for scal
able, distributed data structures. Pnoceedings of the 20th
International Conference on Data Engineering (ICDE '04)
pages 412-423, Boston, MA, 2004.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman. Efficient erasure correcting coddSEE Trans-
actions on Information Theory47(2):569-584, February
2001.

F. J. MacWilliams and N. J. SloanelThe Theory of Error
Correcting CodesElsevier Science B.V., 1983.

P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Resen
thal, and M. Baker. The LOCKSS peer-to-peer digital
preservation systemACM Transactions on Computer Sys-
tems 23(1):2-50, 2005.

E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed.
Strong security for network-attached storage.Phoceed-
ings of the 2002 Conference on File and Storage Technolo-
gies (FAST)pages 1-13, Monterey, CA, Jan. 2002.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. tvy

A read/write peer-to-peer file system. Rroceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation (OSDJ)Boston, MA, Dec. 2002.

M. O. Rabin. Fingerprinting by random polynomials. fiec
nical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

M. O. Rabin. Efficient dispersal of information for seity,

load balancing, and fault tolerancelournal of the ACM
36:335-348, 1989.

E. Riedel, M. Kallahalla, and R. Swaminathan. A framewo
for evaluating storage system securityPimceedings of the
2002 Conference on File and Storage Technologies (FAST)
Monterey, CA, Jan. 2002.

M. Ripeanu, A. lamnitchi, and I. Foster. Mapping the
Gnutella network. IEEE Internet Computing6(1):50-57,
Aug. 2002.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer st
age utility. InProceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP '0Ojages 188-201,
Banff, Canada, Oct. 2001. ACM.

T. Schwarz. Verification of parity data in large scalerage
systems. IrProceedings of the 2004 International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications (PDPTA '0Q)Las Vegas, NV, 2004.

T. J. Schwarz, R. W. Bowdidge, and W. A. Burkhard. Low
cost comparison of files. IProceedings of the 10th In-
ternational Conference on Distributed Computing Systems
(ICDCS '90) pages 196-201, 1990.

L. Xu and J. Bruck. X-code: MDS array codes with opti-
mal encoding. IEEE Transactions on Information Theory
45(1):272-276, 1999.

