
Reliability Challenges for Storing Exabytes
Ahmed Amer

Santa Clara University
Santa Clara, CA
aamer@scu.edu

Darrell D.E. Long
University of California

Santa Cruz, CA
darrell@cs.ucsc.edu

Thomas Schwarz, S.J.
Universidad Católica del Uruguay

Montevideo, Uruguay
tschwarz@ucu.edu.uy

Abstract—As we move towards data centers at the exascale,
the reliability challenges of such enormous storage systems are
daunting. We demonstrate how such systems will suffer substan-
tial annual data loss if only traditional reliability mechanisms are
employed. We argue that the architecture for exascale storage
systems should incorporate novel mechanisms at or below the
object level to address this problem. Our argument for such a
research focus is that focusing solely on the device level will not
scale, and in this study we analytically evaluate how rapidly this
problem manifests.

I. INTRODUCTION

Fontana, Decad and Hetzler calculate in 2013 that it would
require a capitalization of $100B in order to replace HDD
enterprise applications with NAND flash [4]. We can safely
assume that disks will continue to be the mainstay of mass
storage systems. According to the road map of the storage
industry, disk drives will reach a capacity of 12 TB in 2015 [5].
If the storage utilization of a disk is on average 80%, and if we
devote 4% of the available space to store parity data, then we
need 113, 778 12 TB-disks per exabyte of storage. This scale
will pose new challenges in reliability, administration, and
power consumption. Here, we concentrate on the reliability
implications of exascale storage.

At failure rates observed in today’s data centers, an exascale
file system will suffer on average more than one disk failures
per hour. While the overall data loss rate might be low, its
economic costs will vary according to the type and value
of data stored. For example, a simple data warehouse might
be filled with consumer data that retains its value even if it
loses a substantial portion of the data stored, while losing
one disk sector’s worth of data might destroy the capacity of
researchers to evaluate an experiment at CERN, necessitating
a tremendously expensive repetition of that experiment. The
stakes are high. As Keeton and colleagues state bluntly:
“Losing information when a storage device or data center fails
can bring a company to its knees — or put it out of business
altogether” [11].

In the following, we assume a large-scale storage solution
that uses storage bricks, self-contained storage units with a
reasonably large number of disks. Storage bricks seem to be
the correct level for storage units, since dealing with individual
disks is much more prone to error. A technician who removes
a good (instead of a failed) disk drive from a storage system
will cause the system to go into degraded mode, reconstructing
data and possibly finding that it is now impossible to do so.

A brick contains tens of such disks and is managed as a
unit. If a brick is removed or temporarily disconnected, the
system has lost access to a large part of its data, but if the
brick is reconnected, the data becomes accessible again. The
ease of management makes an organization based on bricks
so attractive and justifies our considering only this type of
architecture for a storage system.

A storage brick stores data redundantly and can recover
from failures internally. We assume such bricks are organized
as a fully declustered RAID Level 5 or Level 6 disk array, with
several distributed spare disks. If a brick has suffered several
failures, its data will be moved to other bricks and the entire
brick removed.

We calculate data loss rates for these standard storage
bricks, and find that the data loss rates are acceptable for
some applications but not necessarily for all. We present here
an argument for data protection at a higher level in the exa
scale storage system. The alternative would be to improve
the system reliability by increasing individual node reliability.
This would contradict the character of storage bricks. Instead,
we can use semantic information for higher valued data to use
intelligent placement on top of the device level, or knowledge
of the underlying brick arrangements below this level to inform
placement according to environmental conditions.

Below we consider only two causes for dataloss, namely
full disk failure and latent disk errors. To this, future storage
systems architects will also have to add losses due to opera-
tional errors, physical brick failure, losses due to networking
outages, and generic catastrophes such as flooding.

II. DISK FAILURES

In 2015, we can estimate disk capacities to be about 12 TB,
while the access rate for disks would be about 200 MB/s.
We organize the data using storage bricks as the building
blocks. Each storage brick is a fully declustered disk array
that provides network access and is self-organizing, self-
configuring, self-tuning, self-healing, and self-managing [1],
[6], [7].

There are two main sources of data loss in magnetic disk
storage, catastrophic loss of a disk and latent errors. An error
in the latter category affects a small number of blocks but does
not affect other blocks on the disk. It is detected only when
trying to access a block. Disk scrubbing can be used to detect
latent errors before they can cause a data recovery operation
to fail [17], whereas intra-disk redundancy masks latent errors

λ λ

ρ

λ

ρ

λ

Fig. 1. Markov models for a fully declustered RAID Level 5

completely [9], and idle read-after-write can detect latent write
errors shortly after they occur [12].

We first concentrate on evaluating reliability numbers of a
storage block by only considering full disk failures for the
moment. We use Markov models to assess the data protection
of such storage bricks.

We first consider a storage brick that is organized as a
completely declustered RAID Level 5 with some spare disks.
We assume that all disks suffer data loss at a constant failure
rate. We also assume that disks fail independently. The upper
half of Figure 1 gives a Markov model for our fully declustered
storage block with n disks, a failure rate λ, and a repair rate ρ.
The model consists of two non-failure states. State 0 models
the storage brick without any failures and State 1 with one
failed disk and recovering the lost data. State F is the failure
state. In State 1, the brick discovers the failed disk and begins
reconstructing the data in it to available spare space.

Let p0 and p1 be the probabilities of the model being in
States 0 and 1. The Kolmogorov differential equations for p0

and p1 are

p′0(t) = −nλp0 + ρp1

p′1(t) = nλp0 − ((n− 1)λ+ ρ) p1.

The solution is

p0(t) =
A cosh

(
Dt
2

)
+ (ρ− λ) sinh

(
Dt
2

)
A exp(1

2 t((2n− 1)λ+ ρ))

p1(t) =
2λn sinh

(
1
2 tD

)
A exp(1

2 t((2n− 1)λ+ ρ))

A =
√
λ2 + 2(2n− 1)λρ+ ρ2

D =
√
λ2 − 2λρ+ 4nλρ+ ρ2.

We now derive an expression for the repair time 1/ρ. Since
there are k data blocks in a reliability stripe, the reconstruction
of a single block on a failed disk requires reading k blocks
and writing one spare block with the reconstructed data. We
can assume a data layout that distributes this work evenly to
all the disks in the brick [2], [8], [15], [16]. With reasonable
accuracy, we can assume a constant bandwidth of b bytes per
second for reads and writes. The size of the disks is S. It
then takes S/b to read or write a full disk. However, disks
are usually not full. If φ is the proportion of the failed disk
that is used, then the time rewrite data to a replacement drive

10 15 20 25 30

50

100

150

200

k

n

10%

20%

30%

40%

50%

Fig. 2. Contour plot of the five year failure rate of a storage brick with n
disks, reliability stripe size k and disk failure rate of 1 per 100, 000 hours.

shrinks to φS/b. Assume that we allocate a portion ψ of the
available bandwidth to recovery operations. Recovering one
disk involves reading from k disks and writing to one disk.
This work is evenly divided over the n − 1 remaining disks,
so that the time for repair is given by

R =
k + 1
n− 1

× φS

ψb
.

For example, if S = 12 TB, b = 200 MB/s , φ = 0.80 (disks
are 80% full), and ψ = 0.5 (we use half the disk bandwidth for
recovery), then R = 27.962(k+1)/(n−1) h. Our calculation
uses a fixed repair time. In practice, recovery operations are
opportunistic and less aggressive in order to not drive up the
disk utilization unnecesasrily. The repair time would then be
distributed and depend on the utilization of the brick by normal
operations. As R is much smaller than 1/λ, it turns out that
assuming an exponential repair rate in our Markov model does
not noticeably distort the results.

With these solutions, we can calculate the 5-year survival
rate of a RAID Level 5 storage brick. We assume that ψ = 0.5
of the bandwidth is reserved for recovery and that disks are
φ = 0.8 full. We assume a disk failure rate during the first five
years of 1/100000 per hour. We plot the result in Figure 2.
We can see that the reliability of these bricks is quite low.
This is due in great part to the large size of the disks and the
low ratio of bandwidth to capacity.

While the very real possibility of data loss at all is discon-
certing, at each episode, the brick will only lose some of its
data. The economical costs of each data loss will depend on
the amount of data that is lost, the impact on the usability of
the remaining data, and the economic value of the data that
becomes unusable. With these values, we can make decisions
on the provisioning of a storage system. We therefore want to

0 100 200 300 400 500
n0

2

4

6

8

10

12

nines

p1

p2

p3

p4

p5

Fig. 3. Stable state probabilities pi for being in a state with i failed disks for
i = 1, 2, 3, 4, 5. We give − log10(pi for λ = 1/100, 000, k = 16, ψ = 0.5,
and φ = 0.8.

0 50 100 150 200
n0

2. ´ 10-7

4. ´ 10-7

6. ´ 10-7

8. ´ 10-7

1. ´ 10-6
rate

Ψ=0.2, k=8

Ψ=0.5, k=16

Ψ=0.2, k=16

Ψ=0.5, k=8

Fig. 4. Dataloss rates for a RAID Level 5 storage brick

calculate the data loss rate of an individual storage brick. To
this end, we change the Markov model to the ergodic model
presented in the lower part of Figure 1. The new model does
away with the Failure State and replaces the transition from
State 1 to the Failure State with a transition to State 0. This
transition models a data loss, after which a new brick replaces
the old one “magically” with all the data that could be rescued
from its predecessor’s catastrophic failure. Our assumption is
conservative in that it can only underestimate data loss rates.
The new model is simpler and we can calculate equilibrium
probabilities for being in either of State 0 or State 1. If we
denote the probability of being in State i with pi, then we
have

p0 + p1 = 1
nλp0 − (ρ+ (n− 1)λ)p1 = 0

with solution

p0 = 1− nλ

(2n− 1)λ+ ρ

p1 =
nλ

(2n− 1)λ+ ρ
.

The failure transition is taken with rate p1(n − 1)λ. This
number constitutes the rate at which these bricks suffer data
loss [19].

λ λ

ρ

λ

ρ

λ λ

ρ ρ

λ

ρ ρ

Fig. 5. Markov models for a fully declustered RAID Level 6

If during a rebuild, a second disk fails, some data will be
lost. We now calculate the average amount of data lost. The
first disk has already had some of its data recovered to spare
space. We call the proportion not yet recovered α. A block in
this part of the disk cannot be reconstructed if one of the k
blocks in the same reliability stripe is located on the second
failed disk. This happens with probability k/(n−1). The first
failed disk loses φαk/(n− 1) of its data. However, only (k−
1)/k of this data is user data, so that the total amount of
user data lost is αφ(k− 1)/(n− 1). Similarly, a block on the
second failed disk is lost if it shares a reliability stripe with an
as yet unreconstructed block in the first failed disk. Therefore,
this disk loses φα(k − 1)/(n− 1) of its user data as well. In
total, we lose 2φα(k − 1)/(n− 1) user data, and on average
φ(k − 1)/(n− 1) data, since α has mean 1/2.

In our calculations, we neglected the effect of additional
disk failures when one disk failure is already present. Our
approximation is justified by a calculation that shows that
being in a state with 2, 3, 4, . . . failures occurs with an
exponentially decreasing probability. We solved an extension
of the Markov model with more failure states (using our
standard assumptions of disk failure rate of one per 100, 000
hours, ψ = 0.5 and φ = 0.8) to calculate the steady state
probabilities pi that the storage brick has i failures. Figure 3
illustrates the results. There, we give the negative decadic
logarithm of the probabilities. For example, p1 ≈ 10−2.1. The
result show us that the steady state probabilities only depend
on n for small values, and even then, not in a dramatic way.
As we can see, the probabilities fall in this typical case by a
factor of 100. Therefore, the third failure will not add more
than about 1% to the dataloss rate as calculated above. The
fourth, fifth, . . . failure can therefore be completely neglected.

Our model describes behavior in steady-state, but of course
a new storage brick starts out without any failures, and is not in
this steady-state. We compared the failure behavior of a fresh
brick with an existing one according to the approximation by
steady state, and found that the failure rates were too close
to make any appreciable difference for data loss rates. For
brevity, we do not include these results.

We now turn our attention to RAID Level 6. Figure 5
shows the usual Markov model followed by the ergodic change
obtained by changing the transition to the Failure State to

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

k

Ψ

1×10
-7

2×10
-7

3×10
-7

4×10
-7

5×10
-7

100 200 300 400 500

5

10

15

20

25

30

n

k

5×10
-8

1×10
-7

1.5×10
-7

2×10
-7

Fig. 6. Contour graph of the dataloss rates for a RAID Level 5 storage brick with λ = 1/100, 000h, utilization φ = 80%, and n = 200 (left) and with
λ = 1/100, 000h, utilization φ = 80%, and ψ = 0.5 (right)

a transition to the Initial State. Now, we have three states
representing fully functioning, fully declustered, RAID Level 6
arrays. First, there is the initial State 0 with no failed disks. In
State 1, there is a single disk failure, which is being repaired
at rate ρ. We use the same convention as before for repair
transitions. Strictly speaking, the “repaired” disk array has one
less fully functioning disk. In this scenario, we assume that
we are continuing to repair the first failed disk using all the
bandwidth allotted to repair from all remaining disks in the
array. Therefore, we continue to have a repair rate ρ for the
state transition to State 1. The equilibrium conditions of the
state probabilities p0 (being in State 0), p1 (being in State 1),
and p2 (being in State 2) for the ergodic model are

p0 + p1 + p2 = 1
nλp0 = ρp1 + (n− 2)λp2

ρp1 + (n− 1)λp1 = ρp2 + nλp0

The solutions are

p0 =
(n− 2)(n− 1)λ2 + (n− 2)λρ+ ρ2

(2− 6n+ 3n2)λ2 + 2(n− 1)λρ+ ρ2

p1 =
nλ(n− 2 + ρ)

(2− 6n+ 3n2)λ2 + 2(n− 1)λρ+ ρ2

p2 =
(n− 1)nλ2

(2− 6n+ 3n2)λ2 + 2(n− 1)λρ+ ρ2
.

Each repair still involves reading k disks and writing an
additional disk. Thus, the repair times are still the same as
calculated for RAID Level 5, giving us the repair rate

ρ =
n

k + 1
ψb

φS
.

Data loss is described by a transition from State 2 to State
0 and occurs with rate p2(n − 2)λ. At the moment of the
transition, we have three failed disks. This happens if the
recovery of data on the first disk has not yet finished. The
times of the second and third failure are during the repair time
of the first disk. Let t0 be the time of the first failure and let
1/ρ be the repair time of the first disk. We can assume that the
other two failures are uniformly and independently distributed
in the interval [t0, t0 + 1/ρ]. The second failure is the first of
the two failure events and happens on average 1/3 into the
interval, and the second 2/3 into the interval. Therefore, on
average the first disk has already been 2/3 recovered.

A block that has not been recovered on the first disk cannot
be reconstructed if it its reliability stripe contains blocks on the
second and the third failed disks. This happens with probability

q =
(
n− 3
k − 3

)(
n− 1
k − 1

)−1

=
(k − 1)(k − 2)
(n− 1)(n− 2)

.

We lose a block on the first disk with probability q/3. We
lose data in a block in the second disk if its reliability stripe
contains a block on the first failed disk that has not yet
been reconstructed, and a block on the third failed disk. This
again gives a loss probability for the block of q/3. The same
argument holds for the third disk. We lose a block on one of
the failed disks with probability q/3 and have in total a loss
rate of blocks of q.

The rate of data loss with disk size S is therefore given by

(k − 2)(k − 1)λ3n
5.7×1023(n−1)2ψ2

(k+1)2S2φ2 + 1.5×1012λ(n−1)2ψ
(k+1)Sφ + λ2(3(n− 2)n+ 2)

.

The constants in this formula arise from using absolute
numbers for the disk size and the bandwidth. We can see

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

k

Ψ

1×10
-9

2×10
-9

3×10
-9

6×10
-9

100 200 300 400 500

5

10

15

20

25

30

n

k

5×10
-10

1×10
-9

1.5×10
-9

2×10
-9

4×10
-9

Fig. 7. Contour graph of the dataloss rates for a RAID Level 6 storage brick with λ = 1/100, 000h, utilization φ = 80%, and n = 200 (left) and with
λ = 1/100, 000h, utilization φ = 80%, and ψ = 0.5 (right)

by comparing Figures 6 and 7 that the additional parity per
reliability stripe of declustered RAID Level 6 brings a 100-
fold decrease in data loss rates.

Our results show that even RAID Level 5 already does a
reasonable job protecting against the effects of disk failure at
very reasonable hardware costs. The declustered architecture
distributes the recovery operation in the degraded mode over
many disks, leading to quick recovery from failure and the
brick spends less time in the vulnerable state. The second
parity drive in the RAID Level 6 architecture reduces the
dataloss rate by about 100 times. In absolute numbers, the
system still loses data. A typical 1 exabyte system will lose
on the order of 0.5 GB/h on average, or about 4.4 TB of
data per year, due to full disk failures. To protect against this
loss, each brick could have one additional parity drive, but the
cost-benefit relationship seems hard to justify.

III. LATENT DISK ERRORS

Latent Sector Errors (LSE) are a reasonably frequent occur-
rence in disk systems. Bairavasundaram [3] observed a large
set of disks and discovered that 3.5% of disks developed latent
errors over 32 months. Rozier and colleagues [13] discuss a
similar failure type called Undetected Disk Errors (UDE) that
can result in users receiving faulty data, and concluded that
additional protection mechanisms might be warranted. If we
assume the existence of such a protection mechanism, then
we can convert such unidentified disk errors into latent sector
errors.

The genesis of LSE has, to our knowledge, not been
exhaustively researched. Failure mechanisms include mechan-
ical errors during writes (such as exceeding flight height of
the head over the platter, or servo errors) and defects or

OK F

γ

σ

Fig. 8. Markov model for LSE generation and removal

contamination of the recording medium on the platters. Iliadis
and colleagues [10] assume in their analysis that LSE only
appear as the results of writes. Writes might very well account
for the vast majority of LSE, but we do not know this for
certain. Schroeder and colleagues [14] used the same data set
as Bairavasundaram to obtain correlational data on LSE and
found variance over time, usage, and age of the disk. They
also saw strong interdependence of LSE. Nevertheless, we
will assume here a simple constant rate of LSE that would
be realistic assuming the use of scrubbing and an infra-disk
protection scheme.

In the absence of a better understanding, we assume that
LSE are created by a failure process with rate γ. LSE are
detected by the failure of a normal read or during a deliberate
scrubbing process. They are then fixed, and thereby removed
from the system, using the redundancy in the reliability stripe.
If removals happen at rate σ, then we can use the simple
ergodic Markov model in Figure 8 to calculate the probability
that a disk has a LSE to be γ/(γ + σ). For example, if 3.5%
of all disks develop one or more LSE over 32 months [3],
and we scrub a disk completely every 2 weeks, about 0.05%
of all disks have an LSE. If we assume that user reads are as
effective as scrubbing at discovering LSE, then this percentage
decreases to 0.025%. LSE seem to be highly correlated, and
we assume that each incident of LSE affects on average B
sectors. An reasonable value for B drawn from observation is
approximately 30.

5 10 15 20 25 30

50

100

150

200

k

n
2×10

-13

4×10
-13

6×10
-13

8×10
-13

1×10
-13

5 10 15 20 25 30

50

100

150

200

k

n

5×10
-16

1×10
-15

2×10
-15

2×10
-15

2.5×10
-15

Fig. 9. Contour graph for the data loss rate due to irrecoverable LSE. We assume 12 TB drives with 4KB sectors, a disk utilization of 80%, and an average
number of B = 30 sectors affected. The left figure is for RAID Level 5 while the right for RAID Level 6.

A fully declustered RAID Level 5 storage brick with n disks
suffers a complete disk failure at a rate of nλ, where λ is
the average failure rate of disks during their economic life
span. After a failure, an LSE cannot be recovered if it is on
a sector that shares its reliability stripe with the failed disk.
This happens to (k−1)/(n−1) of all sectors. In order to lose
user data, a sector needs to be actually storing valid user data.
Since the disk is φ full, and since (k−1)/k of its contents are
user data (and not parity data), and since B/T of the sectors
have an LSE (B average number of sectors affected and T the
total number of sectors on a disk), we lose

γ

γ + σ
× k − 1
n− 1

× φ× k − 1
k

× B

T

of sectors due to irrecoverable LSE. This is also the dataloss
rate due to irrecoverable LSE. As Figure 9 shows, the dataloss
rate seems acceptable. Unfortunately, it does not represent
the effects of latent sector errors. A single unreadable sector
renders a complete file unusable, and the failure of this file
might make even more information unusable. Depending on
the type of user data stored, the effects of LSE might need
to be multiplied with a factor that could easily reach 105, in
which case the loss rates would not be acceptable any longer
for many types of data.

In a RAID Level 6 array, a sector with an undiscovered
error is not recoverable, if two disks have failed and its
reliability stripe contains both failed disks. The latter happens
with probability

(
k−3
n−3

)
/
(
k−1
n−1

)
= (k−1)(k−2)

(n−1)(n−2) . To obtain the
rate at which a second disk failure happens, we can reuse
the calculation of the previous section for RAID Level 5.
Accordingly, with repair rate ρ, the second failure happens

at rate
τ =

nλ

(2n− 1)λ+ ρ
× (n− 1)λ.

where the first factor gives the probability that the system is in
a vulnerable state with one disk failure, and the second factor
gives the rate at which the second disk fails. We recall that,
on average, half of the sectors in the first disk are already
recovered elsewhere. To have contained useful data, the sector
needs to have been used (probability φ) and containing user
data (probability (k − 2)/k). This gives the loss rate as

1
2
× (k − 1)(k − 2)

(n− 1)(n− 2)
× τ × φ× k − 2

k
× B

T
.

As Figure 9 shows, the loss rate due to LSE falls by a factor
of about 100. Whether this is acceptable, depends on the data
stored, since a single sector failure can result in much more
data becoming unusable. Since the dataloss rate due to latent
sector error can be controlled by scrubbing and is considerably
lower than the dataloss rate due to complete disk failure, the
important factor in assessing its impact is this magnification
factor of a sector failure. A single failed sector usually renders
a file unusable, but that file is typically only part of a system
of resources. This magnification effect depend entirely on the
nature of the data stored in the failed sector. For most types of
data a factor of 2× 105 separating a typical dataloss rate due
to disk errors from the rate due to latent sector errors is high
enough that we can consider the former (rate of loss due to
disk error) to represent the critical rate in the system. We close
this discussion with the caveat that disk failures and LSE are
not the only causes for dataloss, and that eventually, factors
such as environmental effects (e.g., power loss, overheating,
fire) and operational errors begin to become more important.
Assessing those is beyond the capacity of a general analysis.

IV. CONCLUSIONS

The overall data loss for an exabyte filesystem will remain
high even if we upgrade all the underlying storage components
to more reliable declustered RAID-6 schemes. While such
dataloss may be acceptable in usage scenarios that allow the
reconstruction of missing data (such as scientific simulations
and similar HPC applications), or in cases where the eco-
nomic losses from losing data are negligible, it is a growing
restriction on the feasibility and usability of exascale storage
systems. There are simply some applications where data loss is
a failure of the system. Based on our analytical results we can
conclude that simply focusing on making individual storage
bricks more reliable is not a solution to this problem. We
contend that this demands a broadening of the solution space
being investigated and we offer two directions in which we
will find such solutions. The first is a focus on the data, the
second is a focus on the infrastructure.

A system can be made effectively more reliable when given
a better understanding of data being protected, and a better
understanding of what constitutes a failure to the users of the
system. For example, to permanently lose a source file from
a code project will likely render the entire project unusable.
To lose a second source file from the same project does
not effectively change this state of affairs for the affected
project, but to lose a second source file from a different project
is a far more serious problem. This argues that to build a
more reliable system, it would be worthwhile to incorporate
semantic knowledge of the overlying data to inform placement
decisions. In this manner the failure of one storage brick could
be contained to the smallest number of overlying data sets.
This is a similar approach to that pursued by the Perses project
[18].

A system could also be made more reliable when given
a better understanding of the the infrastructure upon which
it is built. While device failures are often analyzed as being
independent events, this is likely not true at exascales. As
such, rather than a blind insistence on building using ever
more reliable individual components, we advocate the building
of more reliable architectures that can inform reliable data
placement based on the physical nature of the underlying
infrastructure. An event that can result in multiple drive
failures, for example, is the physical damage of a single
rack or its interconnection interfaces. A system that disperses
data across physical groupings would therefore decrease the
likelihood of such correlated failures affecting data that has
not been protected via a parity or replication scheme.

Simply building exascale storage systems as a conglomera-
tion of more reliable individual nodes will not scale. Treating
the data upon it as equally important series of anonymous
bytes, or treating the infrastructure below it as an independent
sea of identical unrelated bricks, are implied by such a device-
centric approach. As such considerations can be addressed by
a software layer at or below the object level, or at or above
the volume level, means that we have opportunities to broaden
reliable storage research and build more reliable systems.

REFERENCES

[1] M. Abd-El-Malek, W. Courtright II, C. Cranor, G. Ganger, J. Hendricks,
A. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. Sambasivan et al.,
“Ursa minor: versatile cluster-based storage,” in Conference on File and
Storage Technologies, 2005, pp. 59–72.

[2] G. Alverez, W. Burkhard, L. Stockmeyer, and F. Cristian, “Declustered
disk array architectures with optimal and near-optimal parallelism,” in
Proceedings, 25th International Symposium on Computer Architecture.
IEEE, 1998, pp. 109–120.

[3] L. Bairavasundaram, A. Arpaci-Dusseau, R. Arpaci-Dusseau, G. Good-
son, and B. Schroeder, “An analysis of data corruption in the storage
stack,” ACM Transactions on Storage (TOS), vol. 4, no. 3, pp. 1–28,
2008.

[4] R. Fontana, G. Decad, and S. Hetzler, “The impact of areal density and
millions of square inches (MSI) of produced memory on petabyte ship-
ments for tape, NAND flash, and HDD storage class,” in Proceedings,
29th IEEE Conference on Massive Data Storage, 2013.

[5] R. E. Fontana, S. R. Hetzler, and G. Decad, “Technology roadmap
comparisons for tape, HDD, and NAND flash: implications for data
storage applications,” IEEE Transactions on Magnetics, vol. 48, no. 5,
pp. 1692–1696, 2012.

[6] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch, “Fab:
enterprise storage systems on a shoestring,” in Hot Topics in Operating
Systems, 2003, pp. 133–138.

[7] J. Gray, “Storage bricks have arrived,” in Invited Talk at the First
USENIX Conference on File And Storage Technologies (FAST02), 2002.

[8] M. Holland and G. Gibson, “Parity declustering for continuous operation
in redundant disk arrays,” in Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 1992, pp. 23–35.

[9] I. Iliadis, R. Haas, X. Hu, and E. Eleftheriou, “Disk scrubbing versus
intra-disk redundancy for high-reliability raid storage systems,” in Pro-
ceedings of the 2008 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems. ACM, 2008, pp.
241–252.

[10] I. Iliadis, R. Haas, X.-Y. Hu, and E. Eleftheriou, “Disk scrubbing versus
intradisk redundancy for raid storage systems,” ACM Transactions on
Storage, vol. 7, no. 2, pp. 5:1–5:42, Jul. 2011.

[11] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes, “Designing for
disasters,” in Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, 2004, pp. 59–62.

[12] A. Riska and E. Riedel, “Idle read after write: IRAW,” in USENIX 2008
Annual Technical Conference. USENIX Association, 2008, pp. 43–56.

[13] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao, and
P. Zhou, “Evaluating the impact of undetected disk errors in raid sys-
tems,” in IEEE/IFIP International Conference on Dependable Systems
& Networks (DNS), 2009. IEEE, 2009, pp. 83–92.

[14] B. Schroeder, S. Damouras, and P. Gill, “Understanding latent sector
errors and how to protect against them,” ACM Transactions on storage
(TOS), vol. 6, no. 3, p. 9, 2010.

[15] T. Schwarz and W. Burkhard, “Almost complete address translation
(ACATS) disk array declustering,” in Proceedings of the Eighth IEEE
Symposium on Parallel and Distributed Processing, 1996, pp. 324–331.

[16] T. Schwarz, J. Steinberg, and W. Burkhard, “Permutation development
data layout (PDDL),” in Proceedings of the 5th International Symposium
on High-Performance Computer Architecture. IEEE, 1999, pp. 214–
217.

[17] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, and S. Ng,
“Disk scrubbing in large archival storage systems,” in Proceedings of
the IEEE 12th Annual International Symposium onn Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems. IEEE,
2004, pp. 409–418.

[18] A. Wildani, E. Miller, I. Adams, and D. Long, “Perses: Data layout for
low impact failures,” SSRC, UCSC, Tech. Rep., 2012.

[19] Q. Xin, E. Miller, T. Schwarz, D. Long, S. Brandt, and W. Litwin,
“Reliability mechanisms for very large storage systems,” in Proceedings
of the 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies. IEEE, 2003, pp. 146–156.

