
Improved Deduplication through Parallel Binning
Zhike Zhang

Univ. of California
Santa Cruz, CA

zhike@cs.ucsc.edu

Deepavali Bhagwat
Hewlett Packard Company

Palo Alto, CA
deepavali.bhagwat@hp.com

Witold Litwin
Université Paris Dauphine

Paris, France
witold.litwin@dauphine.fr

Darrell Long
Univ. of California
Santa Cruz, CA

darrell@cs.ucsc.edu

Thomas Schwarz, S.J.
Univ. Católica del Uruguay

Montevideo, Uruguay
tschwarz@ucu.edu.uy

Abstract—Many modern storage systems use deduplication in
order to compress data by avoiding storing the same data twice.
Deduplication needs to use data stored in the past, but accessing
information about all data stored can cause a severe bottleneck.
Similarity based deduplication only accesses information on past
data that is likely to be similar and thus more likely to yield good
deduplication. We present an adaptive deduplication strategy
that extends Extreme Binning and investigate theoretically and
experimentally the effects of the additional bin accesses.

I. INTRODUCTION

Deduplication is a popular strategy to compress data in
a storage system by identifying and eliminating duplicate
data. Its use for backup workloads has shown impressive
compression ratios (20:1 as reported by Zhu et al. [1], and
up to 30:1 as reported by Mandagere et al. [2]), and can scale
to petabytes [3].

Deduplication works by dividing incoming files or streams
into chunks, characterizing the chunks by their signature
(hash), storing the chunk signatures in an index, and using the
index to find duplicate chunk signatures [4], [5], [6]. Systems
that use chunks of a fixed size lose deduplication opportunities
when even a single byte is added or deleted in a large file.
Content defined chunking [5] sets chunk boundaries based on
a condition evaluated in a small window.

Inline deduplication produces a very large number of
chunks, so if we were to use chunks of 4 kB and store only
25 bytes for each chunk, then the size of the index would be
0.625% of the total amount of storage dedicated to storing
chunks. Even with a compression rate of 1 to 30, a petabyte
storage system would require an index of size 208 GB. The
need to access an index of this size creates the I/O bottleneck
for file deduplication.

Extreme Binning (EB) [3], [7] addresses this issue. EB
(Figure 1) divides the index in bins. When EB processes a
file, it stores all its chunk signatures in a bin indexed by
the minimum chunk signature in the file. A bin accumulates
chunk signatures from different files. All these files have at
least one and probably many chunks in common. If a new
file is processed, EB accesses a single bin (the one with the
minimum chunk signature of the file) and updates this single
bin. We generalize EB by updating the w bins indexed by
the w minimum chunk signatures in the file and looking for
similar files in r bins. We call such a scheme wWrR. A scheme
with w > r does not make sense as we need to read a bin in
order to update it, even if we disregard its contents. While

F

I

L

E

C

h

u

n

k

s
Disk

Bin

All chunk signatures are

inserted into the bin

Primary Index

Min. Chunk Sign.

Bin is addressed by the

minimal chunk signature

Fig. 1. Bin creation in Extreme Binning

EB reads one bin and updates this bin (with a total of two IO
operations), our scheme uses r+w IO operations. We evaluate
EB and our schemes analytically and experimentally how they
fall between EB and perfect deduplication where we compare
a file signature against the complete index.

II. RELATED WORK

Deduplication needs to solve the problem of finding chunks
of data that are already stored in a large repository. This
problem is related to finding similar documents in a large
repository.

A. File Resemblance

Deduplication makes use of techniques developed for search
engines that need to avoid displaying duplicates or near-
duplicates of higher ranked search results. In this context,
Broder [8], [9] proposed extracting features (substrings) from
the document and then to measure resemblance of two doc-
uments based on the relative number of features in common.
This measure is known as the Jaccard index, which is used in
biology to measure species overlap between two sites. Broder
then showed that using the s smallest feature hashes gives an
unbiased estimate of the resemblance of two documents.

Bhagwat, Eshghi, and Mehra [10] use Broder’s feature
extraction technique for document retrieval based on similarity.
They divide the index into a set of partitions. Each partition
is indexed by a feature hash. When a document enters the
collection, the hashes of its features are written to the k
partitions indexed by the minimum feature hashes in the
document. When documents similar to a given document
are searched, the search is directed to the k partitions with

130978-1-4673-4883-6/12/$31.00 ©2012 IEEE

the minimum feature hashes of the given document. We are
analyzing here this technique for deduplication workloads.

B. Overcomming the IO Bottleneck

Chunk-based, inline deduplication divides an incoming file
into a stream of chunks and identifies those chunks that are
already stored. Unfortunately, the number of chunks in a large
system is very large. Current chunk sizes are about 4 kB, so
that a terabyte (TB) system contains 228 and a PB system
238 chunks. Even if a petabyte (PB) backup system achieves
a deduplication ratio of more than 100, this still amounts to
∼ 231 unique chunks. Venti [6] and Jumbo Store [11] find
duplicate chunks with a full chunk index, a dictionary data
structure, where the key is the chunk signature and the value
holds the metadata about the chunk such as its location on
disk. An incoming file is partitioned into chunks and the
index consulted for each chunk in the file. Unfortunately, it
is usually impossible to store the complete index in RAM and
all resulting disk operations throttle the speed at which the
repository can ingest new files.

Zhu, Li and Patterson [1] address this bottleneck by using
an in-memory Bloom filter in order to avoid looking up the
index if a chunk is not in the system. If we use about one
byte per chunk to verify whether a chunk is already in the
repository, we would need a Bloom filter of size 2GB for
our PB system with 100:1 deduplication rate. In this type of
architecture, the Bloom filter resides in memory and secondary
storage holds information on chunks that already reside in the
system. Zhu, Li, and Patterson structure the index carefully
for spatial locality to optimize disk accesses.

Min, Yoon, and Won [12] add to the Bloom filter an index
partitioning data structure that uses LRU to exploit temporal
locality.

Lillibridge and colleagues [13] propose Sparse Indexing
that breaks an incoming stream into large (thousands of
chunks) segments, statistically samples incoming segments,
and determines whether an incoming segment is similar to
one already digested. In this case, it loads the (much smaller)
index of the already digested segment, which fits into RAM.

C. Extreme Binning

Extreme Binning (EB) [3], [7] uses the concept of file simi-
larity to only consult a small part of the whole index (a single
bin). Even though it loses some deduplication opportunities,
EB has shown deduplication rates for sample workloads that
are quite close to optimal. EB splits the chunk index into two
levels. The primary (high level) index resides in RAM and
contains one chunk ID entry per file, namely the minimum
chunk signature. The rest of the chunk IDs are stored in
bins, small subsets of the chunk index, which jointly form the
second level of the index structure. The bins reside on disk and
are accessed using the primary index. The primary index also
contains the hash of a complete file to quickly locate duplicate
files.

When processing an incoming file, EB determines the
minimal chunk signature s. It then accesses the primary index

in RAM, using s as a key. If there is no such entry, EB gives up
trying to deduplicate this file. If there is an entry in the primary
index, then EB first compares the hash of the whole file with
any file hashes it finds in this primary bin entry. This allows EB
to find complete duplicate files. Otherwise, EB loads the bin
associated with the record in the primary index into memory.
It then looks up all chunk signatures from the incoming file
in the bin. If it finds the chunk signature in the bin, it has
found a deduplication opportunity. The bin entry contains
all information necessary for deduplication, in particular the
location of the chunk. After this lookup procedure terminates
and EB knows which chunks are duplicates and where the
other chunks are going to be stored, it generates chunk IDs
for the latter chunks and adds this information to the bin. As
we have seen, EB never uses more than two disk accesses
when processing an incoming file.

The work by Aronovish et al. uses a very similar approach
to EB [14]. Similarity based detection in their system also
uses chunk signatures. They briefly consider and then reject
the possibility of using the four maximum chunk signatures
as the similarity signature of a segment (which they call
chunk). Instead, they use the signature of the four chunks
located at a certain offset to the four chunks with maximum
signature. They see a trade-off between a lesser likelihood
of similarity detection and the elimination of false positives.
As they design for an exclusive backup load and not for file-
based deduplication, their segments will be on average much
larger than for our files and the chunks making up the segment
signature almost always exist, but frequently not in our case.
Their argument is that the signatures of the chunks at an offset
are completely random, whereas the highest bits of the four
maxima are likely to be ones. This concern arises because they
only compare an incoming segment to one segment in memory
in order to process as fast as possible, whereas EB retrieves
information on all files with the same file signature to optimize
deduplication and recovery. Our extensions considered here
follow the same policies. Given these differences that even
go beyond just a different target application, an experimental
comparison of the work by Aronovich and colleagues and ours
is difficult.

Románski et al. propose an alternative to content defined
chunking [15] by introducing two different levels of chunks,
one at 64 KB and the other at 8 KB. On processing an
incoming stream, the large chunk index is searched first. It also
uses a small “anchor” chunk to indicate that corresponding
parts of an on-disk index of small chunks should be fetched.
The anchor chunks serve similarly to the maximum signature
chunk in extreme binning. An evaluation on our data set
showed that anchor- driven subchunk deduplication has worse
storage deduplication, but saves some (but not a lot of) RAM.
Since it uses sequential prefetching of the small chunk index,
it performs better than EB with IO-latency.

III. ARCHITECTURE

We propose an extension of EB that uses more than a single
bin in order to determine whether parts of an incoming file

131

are already stored. As in EB, each bin is a lookup table that
associates a set of chunk values with chunk metadata, most
importantly the location of the chunk in the storage system.
Each bin is labeled by a chunk signature, but unlike EB, this
is not necessarily the smallest chunk signature in the bin.

When a file arrives, we determine the minimum r chunk
signatures and read the corresponding r bins. After processing,
we add all chunk signatures in the file into the w bins
labeled by the minimum w signatures. The parameters r and
w are small values and not necessarily identical. Since most
implementations would need to read a bin before updating it,
in practice w≤ r.

EB also uses the complete file hash to find quickly exact
copies of files already stored. It stores the complete file hash
in the bin with the minimum chunk signature. We do the
same. The effect on deduplication is the same for EB and
our extension.

IV. FILE RETRIEVAL PROBABILITIES AFTER ALTERATIONS

We first assess the effects of extending EB by additional
IO operations in a manner independent of the workload. To
obtain a measure of efficiency, we use a situation where a
new version of a file already stored enters the storage system,
and calculate the probability that we deduplicate the altered
file against the original. The effect of small changes to a file
on its set of chunk signatures are difficult to measure. For
instance, changing a single byte can destroy an existing chunk
boundary or create a new one and thus alter the number of
chunks. We use a simplified model where we represent files
as sets of chunk signatures and model changes to the file by
removing, inserting, and adding chunk signatures to the set.
We concentrate on three scenarios, insertions, where we add
chunk signatures, changes, where chunk signatures change,
and deletions, where we remove chunk signatures.

Assuming a good hash, we can model a set of N chunk
signatures as a set of N uniformly distributed random numbers.
We assume a uniform strategy of adding the set of chunk
signatures from a file to w bins and of retrieving r bins for
deduplication. The original file is represented by a set A of N
chunk signatures and the altered file by a slightly different set
B. When deduplication processes the altered file, it will find
the original file if among the smallest r elements of B is at
least one of the smallest w elements of A.

We use a slot model for our calculations. Each slot repre-
sents an actual or previous chunk, ordered by chunk signature.
For an example, we take a file with five chunks, ordered by
ascending signature. Assume that we now add three more
chunks to the file. We write n for the three new chunks and
r (retained) for the old chunks. A possible configuration is
[n,r,n,r,r,r,r,n], indicating that the minimum chunk signature
(the left n-marker) is a new chunk and that the previous
minimum signature is the original chunk with the minimum
signature. If we use a 2W3R scheme, then we deduplicate
against the original file if one of the current three minimum
signatures is one of the two minimal original chunks. In our
example, EB would not have found the original file, but the

TABLE I
LIST OF ABBREVIATIONS AND INDICES USED

A Appends: changing file through chunk insertion
C Changes: changing the files by changing chunks
D Deletions: changing the files by deleting chunks
r Number of bins read
w Number of bins written
N Number of chunks in a file
p Probability of successful retrieval
℘ Limit of probability N→ ∞

extension would. As another example, assume that we have
again a file with five chunks, but a change to the file deletes
one chunk and changes two. In this example, we have five
slots representing chunks from the original file and two slots
for the “new” chunks created by the change. We use an
n marker for these two. Using d for deleted and c for an
original, but now changed chunk signature, we can describe a
possible situation by [r,c,n,r,n,d,c], in which both EB and
3R2W would deduplicate against the original, because the
minimum chunk signature has not changed (this chunk has
been “retained”).

Retrieval probabilities depend on the model (insertion,
change, deletion) and the exact type of extension, as well
as the total number N of chunk signatures in the original
file and the number x of alterations. We call the probability
of retrieving the file p and indicate the extension in form
wWrR and the model as a subscript and the chunk numbers
as parameters. Thus p(wWrR,A)(N,x) is the probability of
deduplicating against an original of N chunks when x chunks
are added using an extension, which writes w bins and reads r.
We observed that for N→∞, this probability quickly depends
only on the proportion ρ = x/N of chunks modified, appended
or deleted. We calculate this limit as

℘(wWrR,X)(ρ) = lim
N→∞

p(wWrR,X)(N,ρN).

Here X stands for either A, C, or D.
The example in Figure 2 shows an ordered set of chunk

signatures of an original file and then the result of changing
two of them. The minimal signature 0012763 has been re-
placed by 3992165 and signature 9481121 has been replaced
by 6098712. In the slot model of this alteration, all signatures
appear, thus, there are 8 slots. The lowest slot is taken by
the minimal signature of the original file, but this signature
has been changed. The slot assignment starts with a c-marker.
The second slot corresponds to a chunk present in both the
original and the altered file and gets an r-marker. The complete
slot marking results in [c,r,r,r,n,n,c,r]. Incidentally, in this
example, EB does not deduplicate against the original file, but
perhaps against some other related file.

A. Retrieval using Extreme Binning

We explain our probability calculations in detail for EB. We
first treat a changed file and assume that x among N chunk
signatures have changed. EB only writes to a single bin and
looks up a single bin. There are a total of N+x signatures that
we use in our slot model, x changed (c), x new (n), and N−x

132

Original File Print After Ordering

0012763 94811210872535 1293990 3622121 9501401

Two Signatures Changed

3992165 60987120872535 1293990 3622121 9501401

6+2 Slots Assigned

0012763 0872535 1293990 3622121 3992165 6098712 9481121 9501401

Fig. 2. Example of filling slots.

retained (r) signatures. If the first slot contains a c-signature,
then the original file signatures have been stored in certain bin,
but it is highly unlikely in practice and impossible in our model
that the minimum chunk signature of the altered file is in that
bin. Therefore, when we process the altered file, we are going
to load a different bin and will not deduplicate against the
original file. Similarly, if the first slot contains a n-signature,
then the lookup caused by processing the altered file goes to a
different bin. Thus, only if the first slot contains an r-marker,
do we look up the bin where the chunk signatures of the
original file are stored and deduplicate against the original. We
describe this situation as [r,∗]. We determine the probability by
counting the distributions of the N−x r-markers in the N +x
slots. The number of ways to distribute the remaining N− x
r-markers among the remaining N+x−1 slots is

(N+x−1
N−x−1

)
out

of
(N+x

N−x

)
ways to distribute the r-s in the slots, which gives us

p1W1R,C(N,x) =
N− x
N + x

If we set x = ρN, we obtain (without having to calculate a
limit)

℘1W1R,C(ρ) =
1−ρ

1+ρ

We model a growing file by adding x signatures to a set of N
original signatures. Deduplication of the altered file accesses
the bin with the chunk signatures of the original file, if the first
slot is a r-slot. The expression for the slot assignment is again
[r,∗], but while the total number of slots remains N + x, the
number of r-markers is now N as opposed to N−x previously.
This gives us

p1W1R,A(N,x) =
(N+x−1

x−1

)
/
(N

x

)
=

N + x
N

If we add a proportion ρ of the signatures, we get

℘1W1R,A(ρ) =
1

1+ρ

as the probability of using the original file for deduplication
of the altered one.

If we delete x signatures, then retrieval is successful if
and only if the first slot is not a c-slot. We have x changed

markers and N− x retained markers. The probability is given
by counting the number of ways to distribute the c-markers
among the N slots as

p1W1R,D(N,x) =
(N−1

x

)
/
(N

x

)
= 1− x

N

and ℘1W1R,D(ρ) = 1−ρ.

B. Retrieval using Minimum and Maximum
We now consider an interesting extension of EB that uses

both the minimum and the maximum chunk signature in order
to write to and read from two bins. In this version, all chunk
signatures of a file entering the system are compared to all
signatures in two bins and these two bins are later actualized.
The difference to our 2W2R scheme is in the choice of the
second bin.

Assume first that we change x out of N signatures in the
set constituted by the chunk signatures of a file. Retrieval
is successful with the minimum, if the leftmost slot has an
r-marker and retrieval is successful with the maximum if
the rightmost slot has an r marker. The corresponding slot
patterns are [r,∗,r], [r,∗,c], [r,∗,n], [c,∗,r], and [n,∗,r]. The
total number of arrangements for the N− x r-markers among
the N + x slots is

(N+x
N−x

)
. An arrangement where we do not

access one of the two bins is one where all r-markers are
in the middle N +x−2 slots, and there are

(N+x−2
N−x

)
ways for

this arrangement. Simplifying 1−
(N+x−2

N−x

)
/
(N+x

N−x

)
gives for the

probability of retrieval using Minimum and Maximum (MM)

pMM, C(N,x) = 1− 2(2x−1)x
(N + x−1)(N + x)

For the limit, we obtain

℘MM,C(ρ) =
(1−ρ)(1+3ρ)

(1+ρ)2

When we add x to N signatures, then the retrieval fails if
all r markers are in the middle N + x−2 slots. This happens
with probability

(N+x−2
N

)
/
(N+x

N

)
, giving us after simplifying

pMM,A(N,x) = 1− (x−1)x
(N + x−1)(N + x)

.

For the limit, we obtain

℘MM,A(N,x) =
1+2ρ

(1+ρ)2 .

A similar argument is valid for deletions, but now we have
N slots of which x are filled with the d-marker. We do not
retrieve the original if all r markers are in the middle N− 2
slots, which happens with probability

(N−2
N−x

)(N
N−x

)−1
or

pMM,D(N,x) = 1− (x−1)x
N(N−1)

and
℘MM,D(N,x) = 1−ρ

2.

As Figure 3 shows, the chances for retrieval are markedly
improved over the EB for almost the whole range of ρ.

133

1 2 3 4
Ρ

0.2

0.4

0.6

0.8

1.0
p

EB

MM and 2W2R

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0
p

EB

MM
2W2R

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0
p

EB

MM and 2W2R

Fig. 3. Probability p of successful retrieval to a file after adding (left) and changing (middle) and deleting (right) a proportion ρ of its chunk signatures.

C. Retrieval with 2 Writes and 2 Lookups

We now consider the 2W2R extension of EB, where we
use the two minimal chunk signatures of a file to select the
two bins in which we store the file signature and with which
we compare the file signature. We first consider changes.
Enumerating the slot assignments corresponding to successful
retrieval is not simple, for this reason, we verified all our
formulae using simulation. A r-marker needs to be in the
leftmost or second leftmost position not counting c-markers
so that the lookup uses a retained signature. Similarly, a r-
marker needs to be in the leftmost or second leftmost position
not counting n markers so that we can access one of the two
bins with chunks from the original file. This gives us exactly
the following possibilities: [r,∗], [c,r,∗], [n,r,∗], and [c,n,r,∗].
A pattern such as [n,n,r,∗] leads to an unsuccessful search, as
we use two new signatures for lookup. With a pattern [c,c,r,∗],
the signatures that lead to the two bins where information on
the original is stored are no longer part of the signature set.
We use multinomials

(N
a,b,c

)
= N!

a!b!c! to count the number of
arranging three set of a, b, and c markers into N = a+b+ c
slots.This gives the following retrieval probability and its limit

p2W2R,C(N,x) =(N+x−1
N−x−1,x,x

)
+2
(N+x−2

N−x−1,x−1,x

)
+
(N+x−3

N−x−1,x−1,x−1

)(N+x
N−x,x,x

)
℘2W2R,Cρ) =

1+3ρ−4ρ3

(1+ρ)3

Now we assume that the signature set has x inserts. In this
case, the second write has no benefits since the alteration
never destroys access to the first bin (with minimum signature
as key) while maintaining access to the second bin (with
the second minimal signature as key). The only pattern for
retrieval failure is given by the pattern [n,n,∗] where we do
the lookup with new chunk signatures. Thus

p2W2R,A(N,x) = 1−
(N+x−2

x−2

)(N+x
x

)
= 1− x(x−1)

(N+x)(N+x−1)

℘2W2R,A(ρ) =
1+2ρ

(1+ρ)2

We now consider a file with N chunk signatures of which
x are removed. The retrieval does not function for the pattern
[d,d,∗]. We can obtain the probability of using the original
file for deduplication as an opposite probability:

p2W2R,D(N,x) = 1−
(N−2

x−2

)(N
x

)
= 1− x(x−1)

(N)(N−1)

℘2W2R,D(ρ) = 1−ρ
2

Minimum-Maximum functions exactly the same as the
2W2R-scheme for deletions and insertions, whereas a com-
parison of the patterns shows that for changes, 2W2R is
slightly better. Figure 3 compares the three schemes. Retrieval
probabilities are up to 28.2% better with 2W2R-scheme than
with EB in the case of changes. For insertions and deletions,
the improvement attains a maximum of 25% for ρ = 1 and
ρ = 0.5, respectively. We recall that these improvements cost
two more IO operations per processed file.

D. Retrievals with One Write

We now explore the effects of additional reads on retrieval
probabilities. We first explore this for schemes that insert the
chunk IDs of an incoming file into a single bin, i.e. schemes
with a single write, but where we read r bins (selected by the
minimum chunk signatures of the incoming file). If we add x
chunk signatures, the retrieval fails if the first k out of N + x
slots only contain n-markers. This gives us

p1WrR,A(N,x) = 1−
(N+x−r

x−r

)(N+x
x

)
= 1− x(x−1)...(x−r+1)

(N+x)(N+x−1)...(N+x−r+1)

℘1WrR,A(ρ) = 1− ρr

(1+ρ)r

If we delete x out of N chunk signatures then retrieval is
possible if and only if the minimum chunk signature has not
be deleted.

p1WrR,D(N,x) = x/N

℘1WrR,D(ρ) = 1−ρ
r

134

1 2 3 4 5
Ρ

0.2

0.4

0.6

0.8

1.0
p

EB

1W2R
1W3R
1W4R

0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0
p

EB

1W2R

0.2 0.4 0.6 0.8 1.0
Α

0.2

0.4

0.6

0.8

p

1W3R

1W2R

1W4R
1W6R

Fig. 4. Probability p of retaining access to a file after adding (left) and changing (middle) a proportion ρ of its chunk signatures. Retrieval probability after
deletion do not increase from adding more reads. The right figure gives the retrieval probability against both of two merged files depending on the proportion
of the first file’s chunks in the merger.

If we change x out of N signatures, then we can retrieve with
r reads if an r-marker is among the first r slots and there are no
c-markers before this first r-marker. Thus, the slot assignments
that allow retrieval are [r,∗], [n,r,∗], [n,n,r,∗] and so on until
a pattern with r−1 n-markers followed by an r-marker. Thus

p1WrR,C(N,x) =
r

∑
ν=1

(N+x−ν

N−x−1,x−ν+1,x

)(N+x
N−x,x,x

)
The first limit functions are

℘1W1R,C(N,x) =
1−ρ

1+ρ

℘1W2R,C(N,x) =
1+ρ−2ρ2

(1+ρ)2

℘1W3R,C(N,x) =
1+2ρ−3ρ3

(1+ρ)3

Finally, we consider the set of signatures of a file that is the
merger of two files. Clearly, even a simple concatenation will
likely merge the last and the first chunk of the two files and
hence change the set of signatures, but we model the situation
by a union of the two sets of signatures. In this idealistic
model, we deduplicate the merged file against both originals
if signatures from both files are among the k smallest. This
probability depends on the relative proportion of signatures
belonging to one file, we call this number α . We omit the
derivation but present numerical results in Figure 4.

When we compare the numerical results for additional read
operations in Figure 4, we see that adding read operations
is quite efficient for growing files and merged files, that
in the case of changes a second read has some benefits,
but that additional reads loose effectiveness rather quickly.
For a growing file, the second read yields up to 25% more
probability (at ρ = 1), adding the third read yields 38.49%
more (at ρ = 1.366), and adding the fourth read yields up to
47.25% more (at ρ = 1.702). The middle graph in Figure 4
shows how adding more reads for a file with a proportion
ρ of changed signatures quickly converges to the optimal
value of 1− ρ, which is the probability that the minimum
chunk signature under which the file signature was filed has
been changed. Additional reads are very effective in case of
a merged file. EB can only deduplicate against a single file,
but the second read operation deduplicates the merged file

0.0 0.2 0.4 0.6 0.8 1.0
Ρ

0.2

0.4

0.6

0.8

1.0
p

2W1R

2W2R

2W3R1-Ρ
2

Fig. 5. Retrieval probability after changing a proportion ρ of chunks using
schemes with 2 bin writes and 1, 2, 3, 4, and 5 lookups. The highest curve
is that of the theoretical limit where we do lookups for all signatures in the
file.

against both components with 50% probability if the two
components have equal size. We also note that the benefits
of additional reads accrue already if the file grows moderately
or if a relatively small part of the file is changed.

E. Retrievals with Two Writes

Increasing the number of bins in which we store chunk
IDs from a file does not increase retrieval chances if the
alteration results from extending a file or merging two files.
When signatures are changed, the situation is different as we
can now retrieve even if the minimum signature of the original
file is changed. The slot assignments that allow retrieval with
r lookups are those were the first r slots have zero or more
n-markers, followed by an r-marker, or where the first r slots
have one c-marker among one or more n-markers, followed
by an r-marker. This gives

p2WrR,C =
r

∑
s=1

(N+x−s
N−x−1,x−s+1,x

)
+

r

∑
s=2

(s−1)
(N+x−s

N−x−1,x−s+2,x−1

)
If we were to look up all bins in the signature of the file, then
in the limit, the chances of a successful retrieval are given
by the probability that the two signatures under which we
stored the chunk IDs of the original file have not changed, i.e.
(1−ρ)2 if we changed a proportion ρ of signatures.

We display the curves for the limit as N→ ∞ in Figure 5,
where we display the curves for 2W1L, 2W2L, 2W3L, 2W4L,

135

2W5L, and the function ρ → (1− ρ)2. The first scheme,
2W1L, performs in fact exactly as EB, so that writing to
the second bin yields no benefit. (It would in the case of a
shrinking file.) We can see that improvements of additional
lookups are at first substantial. The second lookup gives 25%
more retrieval probability (at ρ = 1/3), the third 34.99% (at
ρ = 0.393), and the maximum achievable is 41.86% more (at
ρ = 0.4656).

If we alter a file by deleting chunks then the number of
reads does not improve retrieval probabilities, but the number
of writes does. Indeed, if we write the file signature to w bins
and delete x chunks from the file, then we retrieve the original
file if one of the N−x retained chunks is among the minimal
w signatures. If w > x, this is always true, otherwise we obtain

pwWrR,D = 1−
(N−w

N−x

)(N
x

)
= 1− x(x−1)...(x−w+1

N(N−1)...(N−w+1

℘wWrR,D(ρ) = 1−ρ
w

F. Substitution of Secondary Reads

Extending EB with additional bin reads and writes can
be implemented in a parallel manner if we use more than
one storage device to store the bins. Of course, if we use a
reasonable number of storage devices, then often processing a
single file includes reading from the same device. We inves-
tigate a strategy that only makes one access to each storage
device. In this strategy, we always read the bin corresponding
to the minimal chunk signature, but select additional bins for
reading only if the access is to different devices from which
we read a bin with smaller signature. We restrict ourselves to
schemes where we always write to one or always write to two
bins (wherever they may be located). Since we can delay and
bundle writes, we do not care about the location of the bins
to which we write.

To assess these schemes, we calculate the probability of
retrieving the file signature of the original file with a read to
the bin specified by the kth minimal chunk signature in an
altered file, assuming that the bin with the minimal chunk
signature did not contain the original file.

If we write chunk IDs into a single chunk and consider a
change of x out of N signatures, then lookup with the minimum
succeeds with slot assignment [r,∗]. The slot assignments
where the lookup with the minimum fails, but the one with
the kth minimal signature succeeds are [n, . . . ,n,r,∗] where the
r-marker is at position k. If we write the chunk IDs of a file
into two bins, then we obtain additional assignments, where
one of the n-markers is replaced by a c-marker. An additional
pattern has an additional r-marker before the kth r-marker, but
not of course in the first position.

When we add signatures to an existing set, the slot arrange-
ments are simpler. In the case of a scheme writing to two
bins, lookup with the second minimal signature succeeds while
the one with the minimum does not, has slot arrangements
[n,r,∗], while lookup with the third succeeds with [n,n,r,∗]

TABLE II
DATA SETS USED IN EXPERIMENTS

Set Nr Files Size

Linux 3186361 35.678 GB
Archive 2090537 53.407 GB
M57 3606473 909.362 GB
HP 17669935 4540.209 GB

and [n,r,r,∗], which we can simplify borrowing from notation
for regular expressions as [n,?,r,∗]. As a result, retrieval
probabilities are the same.

We give the results of our calculations in Figure 6. The
curves show that lookup with the minimum and the second-
minimal signature are in general quite superior to lookup
with minimum and third-minimal signature and even more to
lookup with minimum and fourth-minimal signature, but only
in case of changes. The effects are less pronounced if the
scheme writes chunk IDs of a file to two bins. We conclude
that substitution of secondary reads is not likely to have a
pronounced effect on deduplication rates.

V. EXPERIMENTAL RESULTS

To measure the effects of varying extreme binning, we
experiment with four different data sets. The experiments
allow us to compare deduplication rates, index sizes, and disk
read operations. We compared perfect deduplication, extreme
binning (1W1R), and our additional strategies 2W1R, 1W2R,
2W2R, and 3W3R. These latter strategies add disk accesses
to the deduplication process.

A. Data Sets

Our first data set Linux consists of the Linux source code
archive, containing versions 1.2.0 to 2.5.74 and representing
564 versions. This data set contains 3.19 million files and
has a size of 35.7GB. This data set contains many small
files. The second data set Archive is a backup of 251 web
sites obtained from the Internet archive at www.archive.org.
Each web site is captured between once and eight times
with a typical value of two or three versions during several
years. Since web sites were captured at least several months
apart and as some where only captured once, this data set
offers little chance for deduplication. The third data set,
M57, consists of complete, daily backups of four workstations
used by engineers and therefore offers excellent deduplication
opportunities. Our fourth and final data set, HP, is similar,
but more ample, consisting of thirty days of backups from 21
engineering workstations at Hewlett Packard. This is the only
data set where we only had information on the chunks, but
not direct access to the files. We summarize size information
in Table II.

B. Deduplication Results

When simulating the deduplication process, we measured
the overall storage of the data, the size of the index, and the
number of bins accessed. Our numbers for the storage used
does not include overhead, such as the index and the pointers
to chunks already stored in the file manifest. We give the size

136

0.2 0.4 0.6 0.8 1.0
Ρ

0.1

0.2

0.3

0.4

p

1st
2nd

3d
4th

2 4 6 8 10
Ρ

0.05

0.10

0.15

0.20

0.25

0.30

p

1st

2nd

3d

4th

0.2 0.4 0.6 0.8 1.0
Ρ

0.1

0.2

0.3

0.4

0.5

p

1st

2nd
3d

4th
2 4 6 8 10

Ρ

0.1

0.2

0.3

p

1st
2nd and 3d

4th

Fig. 6. Retrieval probabilities for schemes with one (top) and two (bottom) bins written, when changing (left) or adding (right) a proportion ρ of chunks.
The graphs labeled “1st” are retrieval by minimum signature, whereas “2nd”, “3d”, and “4th” are retrieval probability of lookup with the 2nd, 3d, or 4th
respectively minimal signature when retrieval with the minimal does not succeed.

of the index independently, and observe that the pointers to
the manifest have an implementation dependent size, which is
about one or two per thousand.

We give the results of our experiments in Table III. As we
can see, the 2W2R strategy yields deduplication results that
fall midway between EB and perfect deduplication, but more
than doubles the number of bins read. They also increase the
total size of the index. Our data show the strong dependence on
the workload. For example, EB is almost as good as “perfect”
for the Archive data set and the additional effort seems hardly
worth the additional compression that we can achieve. Where
deduplication is performing much better, the picture changes
and additional effort adds considerably to the compression
rate.

Our analysis in the previous sector has shown that addi-
tional reads help when chunks change and are added, while
additional writes help when chunks change or vanish. As most
systems experience a growth, the 1W2R scheme consistently
outperforms the 2W1R scheme.

C. Processing Costs
A deduplication system incurs certain processing costs. We

assume that the task of chunking (calculating chunk bound-
aries and calculating chunk signatures) is given to a different
unit. All deduplication methods using variable chunks have
to perform these tasks. We can use our simulator to measure
processing costs directly attributable to index lookup. These
consist of searching the primary index, reading and writing
bins from RAM, and creating file manifests. As Table IV
shows, the throughput depends on load and algorithm, but is
sufficiently high to not become a bottleneck.

D. Comparison of EB Extensions
Extending EB to access more bins for each file processed

increases storage savings, but also involves more IO in order

to load and write bins. These IO-operations are on the crit-
ical path for deduplication performance. Incidentally, higher
deduplication rates complicate file retrieval, but lower read
performance is of lesser concern for archival systems. In order
to assess the various algorithms, we have to balance more
involved processing with savings in the storage costs. We make
this comparison in terms of hardware saved and expended.

We first discuss a scheme where the secondary index is
kept on disks. Access to the index is the primary bottleneck.
To maintain a high rate of processing, we need to distribute
the secondary index over many disks. In many architectures,
we would use the same disks to store the archive as well as
the index. The index would consume relatively little space,
but be accessed heavily, taxing the interface between disk and
system, whereas the archival data would consume much space
but be rarely accessed. In this scenario, I/O bandwidth to the
dispersed secondary index comes for free and extensions to
EB save storage space by increasing the deduplication rate.

However, in a very large storage systems, the contents of
the storage system would be “farther away”, e.g. in disks in
a SAN or in NAS. We then would implement the secondary
index in directly attached disks. We compare now the number
of disks necessary to store the secondary index, allowing it
to sustain the index accesses necessary to process incoming
data at a reasonable rate with the number of disks saved by
higher deduplication rates. The exact trade-offs depend very
much on the engineering of the storage system and the type
of load, and our results are meant to prove that sometimes EB
is not the best strategy.

We first calculated the time spent on accesses to chunk data
for each strategy. We used an enterprise class disk, the Cheetah
15K.7SAS from Seagate [16] in our simulation and determined
the amount of disk time in seconds in order to process 10 GB
of data. Since we are interested in peak performance, the figure

137

TABLE III
DEDUPLICATION RESULTS

Linux

Algorithm Storage Index Size Bin Reads

perfect 4.676% 9.300 MB 0
3W3R 4.850% 10.421 MB 1535525
2W2R 5.121% 8.547 MB 1065138
1W2R 5.841% 5.629 MB 710794
2W1R 5.999% 8.547 MB 570489
EB 6.459% 5.629 MB 474271
2W2RS 5.555% 8.547 MB 819098
1W2RS 6.148% 5.629 MB 591481

Archive

Algorithm Storage Index Size Bin Reads

perfect 83.292% 234.605 MB 0
3W3R 84.353% 140.737 MB 805585
2W2R 85.231% 114.339 MB 637841
1W2R 85.874% 70.618 MB 590852
2W1R 87.039% 114.339 MB 254407
EB 87.439% 70.618 MB 244327
2W2RS 86.129% 114.339 MB 474309
1W2RS 86.651% 70.618 MB 445439

M57

Algorithm Storage Index Size Bin Reads

perfect 3.707% 161.830 MB 0
3W3R 4.081% 12.081 MB 822961
2W2R 4.200% 9.731 MB 568526
1W2R 4.538% 6.445 MB 439600
2W1R 4.568% 9.731 MB 292279
EB 4.815% 6.445 MB 257328
2W2RS 4.266% 9.731 MB 428663
1W2RS 4.639% 6.445 MB 347550

HP

Algorithm Storage Index Size Bin Reads

perfect 6.593% 1787.376 MB 0
3W3R 6.828% 74.952 MB 2944339
2W2R 6.927% 60.064 MB 1996842
1W2R 7.039% 40.175 MB 1585545
2W1R 7.174% 60.064 MB 1070592
EB 7.273% 40.175 MB 958820
2W2RS 7.042% 60.064 MB 1547227
1W2RS 7.139% 40.175 MB 1265663

TABLE IV
THROUGHPUT MEASUREMENTS

Algorithm Processing throughput (MB/sec)
Linux HP M57

3W3R 562.058 794.528 554.397
2W2R 702.573 1096.804 720.132
EB 1014.827 2060.147 1475.460

of interest for us is the 99 percentile. We give the numbers in
Table V.

If we want to be able to digest 10 GB per hour in the HP
data set, one disk suffices to store chunk information, even for
the more intensive 3W3R strategy. An hour has 60 ·60 = 3600
seconds, and the 99 percentile of the throughput requirement
for 3W3R is 519.949 seconds. Thus, this single disk storing
chunk information sees a maximum utilization of 14.5% at
the single disk storing all bins. The storage needs in this
case are also very limited. First, a peak of 10 GB per hour

TABLE V
STATISTICS OF DISK ACCESS TIME IN SECONDS PER 10 GB OF PROCESSED

DATA FOR CHUNK MANAGEMENT USING A CHEETAH 15K.7SAS (WITH
ROTATIONAL LATENCY OF 2.0 SEC AND RANDOM ACCESS TIMES OF 3.4

SEC FOR READS AND 3.9 SEC FOR WRITES).

M57

Algorithm Mean (s) St. Dev. 99 Perc.
3W3R 73.829 74.525 318.233
2W2R 53.076 58.531 246.188
2W2RS 44.531 56.961 237.768
1W2R 38.258 38.672 159.803
1W2RS 32.680 37.959 153.870
2W1R 36.172 55.556 230.192
EB 27.200 37.359 148.642

HP

Algorithm Mean (s) St. Dev. 99 Perc.

3W3R 62.349 88.923 506.860
2W2R 45.146 69.518 387.129
2W2RS 39.680 67.655 379.954
1W2R 32.717 47.468 247.143
1W2RS 28.869 45.925 243.290
2W1R 33.895 66.039 372.144
EB 25.181 44.594 239.497

TABLE VI
NUMBER OF 512B PAGES OF BINS WRITTEN PER 1 GB OF DATA

PROCESSED.

M57

Algorithm Written Pages Rewritten Pages

3W3R 7146.906 5961.739
2W2R 5029.127 4224.803
1W2R 2563.771 2166.366
EB 2563.771 2166.366

HP

Algorithm Written Pages Rewritten Pages

3W3R 6606.071 4403.873
2W2R 4303.645 2827.44
1W2R 1329.357 2071.413
1W2RS 1329.357 2071.413
EB 1329.357 2071.413

corresponds to a much lower average rate of ingress. Let’s
say (arbitrarily) that the average throughput is 1 GB per hour.
This corresponds to a yearly storage need of 8.550 TB in
year before deduplication, but thanks to deduplication, 3W3R
only stores 0.58 TB of data, using less than a complete 1
TB disk for storage. With EB, the peak utilization using our
single disk for chunk storage is 6.8% and the total storage
after deduplication is 0.62 TB.

We now assume a much larger storage system that stores
annually 10 PB of data. This corresponds to an average ingress
of 0.325 GB per second. We assume a conservative 10-fold
peak load of 3.25 GB per second. The deduplication engine
needs to be able to process this peak load. If we use EB,
then processing 1 GB needs an accumulated service time of
24.4897 seconds at the disks storing the bins with the chunks
in them. If we want a maximum of 50% utilization at these
disks, then we need 2 · 24.4896 · 3.25 disks or 160 disks to
store chunk information. By comparison, 3W3R needs a total
service time of 51.9949 seconds at these bin carrying disks,

138

TABLE VII
TOTAL DISKS NEEDED FOR A 10 PB PER YEAR STORAGE SYSTEM USING

DISKS OF 1 TB OR DISKS OF INITIAL 1TB CAPACITY, BUT WHOSE
CAPACITY INCREASES BY 50% ANNUALLY

M57

Algorithm 1 TB disks 1 TB+ disks

1W1R 2505 1352
1W2R 2373 1287
2W1R 2434 1340
2W2R 2261 1256
3W3R 2248 1271

HP

Algorithm 1 TB disks 1 TB+ disks

1W1R 3793 2051
1W2R 3681 1995
2W1R 3829 2111
2W2R 3716 2057
3W3R 3627 2048

which translates to needing 2 · 51.9949 · 3.25 or 338 disks
to store the chunks for the deduplication engine. In a single
year, our system stores 10 PB user data. However, thanks to
deduplication, we will only need to store 7.273% with EB
and 6.828% with 3W3R of these data, amounting to 728 or
respectively 683 disks of capacity 1 TB. If we maintain the
system for five years, these numbers need to be multiplied by
five and added to the number of disks needed for chunking.
We can now calculate the total number of disks needed for our
10 PB per year system. We did so for all our basic schemes in
Table VII. The second column there shows the total number
of disks used assuming that we use 1 TB disks for storing
user data. The third column gives the total number of disks,
assuming that each year, the storage capacity of these disks
increases by 50%. Our results show that all schemes perform
within 5% of each other using both measurements, and that the
optimal scheme is not EB. These numbers change linearly if
we change the yearly amount of data to be stored. For example,
in a system with 1 PB of data per year, we would need roughly
one tenth of these disks.

Our calculation is somewhat naive. For instance, we com-
pletely ignore the processing costs of processing various bins.
We also assume that disks with bin information are separate
from disks storing user data, whereas in many systems, bins
and user data can be stored on the same disks. Finally, we
likely are over-provisioning the deduplication engine with
disks. Additionally we can use a strategy where we limit the
number of bins read in a situation of high load. For example,
if we use 2W2R and if the load is high, we forego reading
the second bin. This looses some deduplication opportunities,
but helps moving the deduplication process along.

Our next task is a similar comparison where we store the
secondary index in flash memory. Flash memory is more
expensive than disk storage ($1 per GB for flash versus
$0.05 per GB for disks), has a limited number of overwrites
(depending on the type 1000 to 100000 times), has much
faster, but asymmetric access time (200–500 microseconds per
read, for writes two or three times more, both on the raw

TABLE VIII
THE TOTAL NUMBER OF 4 KB PAGES OF BINS WRITTEN AND READ FOR

BOTH THE ORIGINAL ALGORITHM OF UPDATING BINS AND THE
OPTIMIZED ALGORITHM OF UPDATING BINS. Opt REFERS TO THE

OPTIMIZED ALGORITHM AND Ori TO THE NAIVE ALGORITHM.

M57

Algorithm Write#(Opt) Read#(Opt) Write#(Ori) Read#(Ori)

3W3R 464035 4963045 1125403 4471342
2W2R 352078 3048890 820954 2823706
1W2R 211502 1706617 452365 1587703
1W2RS 211502 1468147 452365 1363978
EB 211502 1191989 452365 1103546

HP

Algorithm Write#(Opt) Read#(Opt) Write#(Ori) Read#(Ori)

3W3R 3112302 15517182 5543020 14727540
2W2R 2322952 10258881 3880937 9716984
1W2R 1402298 6187802 2133429 5955192
1W2RS 1402298 5297709 2133429 5099018
EB 1402298 4502486 2133429 4332251

device without FTL). Table VIII gives the number of pages
accessed (read and written) for each load. We distinguish
between two write strategies, a naive method that reads the
complete bucket and then writes its elsewhere, and a more
sophisticated method that only writes the new pages that are
added to the bucket. Based on these numbers, we can calculate
the annual storage requirements for a 10 PB per year system.
Table X gives the results. We observe that the storage needs
per PB of processed data are surprisingly low. Even with
3W3R, we would need between 165 GB and 84 GB of new
flash space for the two backup workloads. The number of
overwrites observed is in the lower three digits. While flash
can be rated at only a thousand write-erase cycles, these are
specifications and actual flash resilience might be ten times
higher. In this case, the number of times that we write to this
limited amount of memory would be low enough so that flash
lasts at least the normal economic life-span of a disk. We also
calculated maximum bandwidth requirements for combined
read and write operations. Our measurements for the backup
workloads show that we read two or three times more from
flash memory than we write to it. This matters as the sustained
transfer rate of reads can be almost double that of writes. Using
the same methodology as before, we assume a peak load of
10 times the average and use the bandwidth requirements at
the 99 percentile to calculate the combined read and write
bandwidth requirements for each scheme in the last column
of Table X. The architecture of flash memory determines the
bandwidth that actual flash storage can offer and sustained
transfer rate differs. Today (January 2012), a single SSD might
suffice and two will suffice for the bandwidth requirements of
our hypothetical system. After a possible initial investment
in an additional SSD, the storage needs become the limiting
factor. We assume that the costs of storage in SSD is 20 times
the costs of storage on disk. We then calculate the annual
needs for disks for storage and for SSD (in terms of disks)
for maintaining the index and obtain a progression, given

139

TABLE IX
ANNUAL COSTS OF A 10 PB SYSTEM PER YEAR IN TERMS OF DISKS USING

SSD FOR INDEX MAINTENANCE.

Algorithm Costs HP Costs M57

3W3R 695.698 418.479
2W2R 703.035 428.36
EB 734.213 487.037

TABLE X
FLASH MEMORY NEEDS

M57

Algorithm Index Size Pgs written Number of Maximum
per PB per PB Overwrites Bandwidth

3W3R 13.285 GB 1.24 ·109 372.8 390.1 MB/sec
2W2R 10.701 GB 9.03 ·108 337.6 324.5 MB/sec
EB 7.087 GB 4.98 ·108 280.9 146.5 MB/sec

HP

Algorithm Index Size Pgs written Number of Maximum
per PB per PB Overwrites Bandwidth

3W3R 16.509 GB 1.22 ·109 295.8 492.8 MB/sec
2W2R 13.229 GB 8.55 ·108 258.5 324.5 MB/sec
EB 8.849 GB 4.70 ·108 212.4 219.9 MB/sec

in Table IX. These numbers show that 3W3R is uniformly
superior in terms of cost to 2W2R and EB.

E. Adaptive Schemes

In our comparisons, we assumed that we access the same
number of bins when processing a file. Thus, the secondary
index needed to be implemented in a way that allowed the
peak demand to be satisfied. However, we can also adopt a
mixed strategy. If the load is low, we can read and write 2
bins, but if the load is high and access to the index becomes
a bottleneck, we only read and write one bin, i.e. we fall back
on EB. We tried out this method by simulation, where we
read and write two bins with probability 1−P and read and
write one bit with probability P and observed the resulting
compression. The result is depicted in Figure 7. The results
are very encouraging. Basically, the compression rate depends
linearly on the probability. In particular, if we have a system

l
l

l
l

l
l

l
l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

P

D
ed

up
lic

at
ed

 D
at

a
S

iz
e

/ O
rig

in
al

 D
at

a
S

iz
e

l Linux
M57
HDup

l l l l l l l l l l l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

P

D
ed

up
lic

at
ed

 D
at

a
S

iz
e

/ O
rig

in
al

 D
at

a
S

iz
e

Fig. 7. Deduplication rate using a mixture of 1W1R and 2W2R. The x-axis
is the rate P at which the system uses the 1W1R scheme. The left graph
contains the data for Linux, M57, and HP data sets and the right one the
Archive (with much less impressive compression).

that can do 2W2R most of the time, we get almost all the
benefits.

F. Conclusions from the Experiments

Our experimental analysis covered four different data sets,
but only the two data sets representing backup loads where
extensive enough to obtain meaningful numbers for bandwidth
requirements. In this case, we can obtain the costs of two
architectures, one based on a disk system in order to solely
support the index and one based on flash storage. We notice
that the first architecture fails to use the idle bandwidth of
disks in a largely archival system. In both cases, we came
to the result that EB is not always the optimal strategy. Of
course, the designer of an actual system can calculate the
bandwidth requirements of all components of the system and
might find the network to be the bottleneck. Most intriguing is
our last experiments where we picked between EB and 2W2R
on a random base and observed practically linear scaling with
the probability. This means that if we saturate components
with a more involved strategy, there is little harm done with
temporarily employing a simpler strategy, such as EB.

VI. COMPARISONS

We briefly report on an experimental comparison with the
schemes of Aronovich et al. [14] and Románski et al. [15].
For the work of Aronovich et al. we substituted their mode
of determining the equivalent of the file signature for using
the k maximum chunk signatures in a file. For the work of
Románski et al. we implemented their complete scheme, but
did not evaluate their strong point, which is addressing the IO
bottleneck through prefetching.

Our numbers given in Table XI compare the schemes on
compression and index site. Since we did not have access to
the original data for the HP data set, we could not evaluate the
work by Románski et al. for this set. The use of Aronovich’s
method for defining the file signature does not play out as
compression is slightly worse even than EB with the exception
of the Archive data set. Possibly, Aronovich’s method would
be more useful if the load were in the exabyte – petabyte
range. In the absence of datasets of this size, a theoretical
study should be undertaken, but would not fit into the present
work. We plan to do so as future work.

Anchor-driven sub-chunk deduplication yields much worse
compression ratios and has in general slightly higher RAM
use. It should be much better with regards to I/O, but it is
unclear whether a distributed solution as we advocate would
not also be very competitive. Since EB was conceived for
backup loads with little locality and Románski’s method was
not, a more favorable picture could emerge with a different
backup load.

VII. CONCLUSIONS

We compared the natural extensions of Extreme Binning
were we access a larger number of bins. Our theoretical results
show the benefits of these extensions when a new file is a
moderate alteration of an already existing file. Unfortunately,

140

TABLE XI
COMPARISON OF EXTREME BINNING (EB), AND ADAPTATION BY THE

FILE SIGNATURE DEFINITION OF ARONOVICH et al. (AR) AND
ANCHOR-DRIVEN SUB-CHUNK DEDUPLICATION BY ROMÁNSKI et al. (RO).

Scheme Compression Rate Index Size

Linux

EB 6.459% 5.902MB
Ar 6.773% 5.780MB
Ro 11.870% 5.314 MB

Archive

EB 87.439% 70.618 MB
Ar 87.077% 61.923 MB
Ro 97.412% 56.584 MB

HP

EB 7.273% 42.126 MB
Ar 7.295% 41.848 MB

M57

EB 4.482% 6.758 MB
Ar 4.875% 6.680 MB
Ro 17.876% 19.318 MB

these theoretical results cannot be applied directly to actual
loads. For instance, if essentially the same file is stored
many times over (e.g. by taking complete system images
over and over again), EB will always do at least a decent
job at compressing and accessing more bins is not worth-
while. Nevertheless, the theoretical results give some insight
under which type of loads the extensions are more valuable.
Our experimental results show that in general, EB is close to
perfect deduplication, and that even reading and writing one
more bin gives results about midway between EB and perfect
deduplication.

Our calculation indicates that depending on the load and the
system architecture, the extensions trade better deduplication
for higher hardware costs in order to support the higher I/O
needs of accessing the secondary index. Our main contribution
is proof that mixed schemes, where we switch to EB under
high loads only, give deduplication rates close to the ones of
the expansion.

In short, while EB appears to be rather close to optimal,
less extreme binning yields benefits. As is often the case,
moderation pays off.

ACKNOWLEDGMENTS

This research was supported in part by the Department
of Energy under Award Number DE-FC02-10ER26017/DE-
SC0005417, by the National Science Foundation under Grants
IIP-0934401 and CCF-1219163, and by the industrial members
of the Storage Systems Research Center, including: EMC,
Hitachi, Huawei, IBM Research, LSI, NetApp, Northrop
Grumman, Permabit and Samsung.

Zhike Zhang was a visiting scholar from Northwestern
Polytechnical University, supported by a schoalrship from the
government of China.

REFERENCES

[1] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data
domain deduplication file system,” in Proceedings of the 6th USENIX

Conference on File and Storage Technologies (FAST), 2008, pp. 269–
282.

[2] N. Mandagere, P. Zhou, M. Smith, and S. Uttamchandani, “Demys-
tifying data deduplication,” in Proceedings of the ACM/IFIP/USENIX
Middleware’08 Conference Companion. ACM, 2008, pp. 12–17.

[3] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme Binning:
Scalable, Parallel Deduplication for Chunk-based File Backup,” in
Proceedings of the 17th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2009), 2009.

[4] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding similar files in large
document repositories,” in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining. ACM,
2005, p. 400.

[5] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Proceedings of the eighteenth ACM symposium
on Operating systems principles. ACM, 2001, pp. 174–187.

[6] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage,”
in Proceedings of the FAST 2002 Conference on File and Storage
Technologies, vol. 4, 2002.

[7] D. Bhagwat, “Deduplication for large scale backup and archival storage,”
Ph.D. Dissertation, University of California at Santa Cruz, September
2010.

[8] A. Broder, “On the resemblance and containment of documents,” in
Proceedings of the Compression and Complexity of Sequences, vol.
1997, 1997.

[9] ——, “Identifying and filtering near-duplicate documents,” in Combi-
natorial Pattern Matching, Springer LNCS-1848. Springer, 2000, pp.
1–10.

[10] D. Bhagwat, K. Eshghi, and P. Mehra, “Content-based document routing
and index partitioning for scalable similarity-based searches in a large
corpus,” in Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ser. KDD ’07, 2007,
pp. 105–112.

[11] K. Eshghi, M. Lillibridge, L. Wilcock, G. Belrose, and R. Hawkes,
“Jumbo Store: Providing efficient incremental upload and versioning
for a utility rendering service,” in Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST), 2007, pp. 123–
138.

[12] J. Min, D. Yoon, and Y. Won, “Efficient deduplication techniques for
modern backup operation,” IEEE Transactions on Computers, vol. 60,
pp. 824–840, 2011.

[13] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse indexing: large scale, inline deduplication using
sampling and locality,” in Proccedings of the 7th conference on File
and Storage Technologies. USENIX Association, 2009, pp. 111–123.

[14] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch,
and S. T. Klein, “The design of a similarity based
deduplication system,” in Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference, ser. SYSTOR ’09. New
York, NY, USA: ACM, 2009, pp. 6:1–6:14. [Online]. Available:
http://doi.acm.org/10.1145/1534530.1534539

[15] B. Romanski, L. Heldt, W. Kilian, K. Lichota, and C. Dubnicki,
“Anchor-driven subchunk deduplication,” in SYSTOR, 2011, p. 16.

[16] Seagate Technology LLC, “Product Manual Cheetah 15K.7 SAS,” 2010.

141

