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Abstract: Estimation of task and project completion times within IT projects
remains one of the most error-prone, but also most critical duties of an IT project
manager. The three-point method introduced by PERT has an expert determine
a pessimistic, a most likely, and an optimistic value for the duration of a task.
It then calculates an estimate for the completion time as a weighted means of
these values. In the literature, PERT’s and similar three-point approximation are
evaluated against a set of beta-distributions. Unfortunately, there is no a-priori
reason to assume that the beta-distribution is the correct distribution for task
completion times seen in practice.

We present an evaluation of three-point approximations for the expected
completion time of a task or project and of two-point approximation for the
variance of the completion time. The evaluation uses a set of distributions defined
by skew and kurtosis instead simply by choosing a range of shape parameters. The
distributions chosen are the beta distribution and the Kumaraswamy distribution.
Both are equally plausible candidates for the a-priori completion time distribution.
We validate various approximations proposed in the literature and show that it
is possible to obtain valid approximations (with low absolute and relative errors)
that work for all test sets of distributions.
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1 Introduction

Estimating task or project completion times remains one of the most critical duties in
the administration of IT projects. Grave errors can lead to large monetary losses or even
sink a project and the company with it. The CHAOS reports by the Standish group
(Johnson 2010, 2013) consistently claim a high rate of software project cancellations (24%
in 2009) and modifications (44% in 2009). The 2012 numbers are better with an 18%
failure rate and a 29% success rate and show a big difference between small and large
projects. Despite the justified criticism of these numbers by Glass (2006) and Eveleens
and Verhoef (2010), the dire picture painted by the Chaos reports appears to be valid.
McConnell (2006) identifies “overly optimistic schedules” as the second-leading cause in
project failures with a frequency of occurring 60% and 70% in typical failed projects.
The Project Management Institute (PMI) (2009) published the results of a survey in which
schedule planning and timing estimation ranks as the second biggest challenge in project
management and identifies the main critical success factor as “Planning for timely, practical
and realistic implementation” with a 43% occurrence rate in 2008, up from 36% in 2006.

The Operations Research community has developed exact or almost exact methods
for estimating the completion time of projects using distribution theory or Monte Carlo
simulation. Unfortunately, strong resistance against Monte Carlo methods (and by extension
other more involved methods) persists among project managers, as was reported by White
and Fortune (2002), Besner and Hobbes (2008) and Whelan (2010). Expert judgement
remains the most popular method according to studies by Kitchenham (1991), Heemstra
(1992), Vidger and Kark (1994), Jørgensen (2004), McConell (2006), Hill (2010) and
Jarabek (2011). Our own experience confirms this for Latin America. We took a survey at
a project manager meeting in Uruguay (2014) that encompassed 52 active professionals of
all levels of experience (23% with less than 2 years, 42% with 3-6, 15% with 6-9 years, and
19% with more than 10 years) using a variety of software methodologies and platforms. Of
these, two (4%) used function points, and the rest expert judgement, of which seventeen
(32%) extended expert judgement with three point estimation. Santos Cruz and Cattini
(2014) took a more detailed survey of 55 IT managers in Brazil; 8 (14%) used Monte Carlo
methods and 21 (38%) used three point estimates always, frequently, or sometimes.

We are thus in the unfortunate position that the academic community advocates methods
that are spurned by practitioners, while at the same time the practitioners themselves
complain about the bad results. Our contribution here is not normative (telling practitioners
to use a better method) but explanatory by trying to invalidate a widely used method to
make expert judgement more informative, namely the use of three point estimates. Clearly,
judgement of experts is subject to various bias (Heemstra 1992, Jørgensen 1995, McConnell
2009, Jarabek 2011, Vidger 1994). Corrective measures such as Delphi could be used to
eliminate this bias over time (Linstone et al. 1975), but the same surveys show that this
is not done frequently. Second, the three point estimates that are used to make the expert
judgment more useful might just be useless because they are based on assumptions that do
not hold in practice. To use a simile from the history of medicine: at the end of the 19th

century, the miasmatic theory of disease was generally accepted and its insistence on good
sanitation to avoid epidemics still remains good public policy. The germ theory of disease
provided superior explanations (bacteria can be observed under the microscope and miasma
can not be made visible) and gave even better policy advise such as isolation of disease
carriers and the use of anti-bacterial methods. Like the miasmatic theory, the three point
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estimates must have some value in practice or it would have been abandoned, but it might
just be humbug. Because it remains popular, the question of its validity remains important.

We concentrate on the assumption that task completion times are distributed according
to a beta-distribution, but with unknown parameters. To our knowledge, no statistics exist
that show that actual completion times are distributed in this way. This is hardly surprising.
Validating a family of distributions requires many data points and any software house that
gives out this amount of information to independent researchers runs the risks of having
its bidding process analyzed by competitors. On the other hand, there is nothing obviously
wrong with the beta distribution since it has an intuitively correct shape.

The seminal work on the accuracy of three-point approximations for mean task
completion was done by Keefer and Bodily already in 1983. They determined relative and
absolute errors for a variety of approximation formulae proposed in the literature using a set
of test distributions. We improve on their methodology by using a set of test distributions
defined by descriptors of the shape of the distribution, namely kurtosis and skewness. More
importantly, we use an alternative family of distributions, the Kumaraswamy distributions,
that appeal just as well to the esthetic sense of what a good task-completion function look
like. Both sets of distributions can be made special cases of McDonald’s (1984) generalized
beta distribution. We cannot and do not claim that either the beta or the Kumaraswamy
distribution are the true distribution for task completion times, but we do claim that both
are reasonable candidates.

If three-point approximation works well for both sets of distributions, then their
use remains reasonable. If however there would be large differences, then three-point
approximation would have been shown to depend on unwarranted assumptions. As it turns
out, three-point approximation does reasonably well, even though the PERT formula itself
is not a winner. We can improve on the PERT formula, but the differences are not strong
enough to advocate yet another three-point estimation formula for mean or variance.

The remainder of this article is organized as follows. We first discuss previous work
and present simple facts for the beta and Kumaraswamy distributions. We then explain how
we obtained finite sets of “test”-distributions by limiting the parameters of the Beta and
the Kumaraswamy distribution by imposing limits on kurtosis and skewness. We repeat
the evaluation of Keefer for various alternative formula for out test sets. In this article,
we test three point approximations for the expected project completion time and two point
approximations for the variance / standard deviation. We also investigate the possibility of
three point approximations using different weight for the optimistic and pessimistic values,
motivated by the fact that we assume a zero or positive skew in the distributions.

2 Related Work

After Malcolm et al. presented the PERT methodology, attempts were made to justify it
more soundly. Clark (1962) justifies the use of the beta distribution by convenience; the
beta distribution parameters can be obtained by algebraically manipulating the extremes
and the mode. MacCrimmon and Ryavec (1964) distinguished three different types of errors
in the PERT approximation, first an error made because the true distribution is not a beta
distribution, second, an error caused by the approximation formula, and third an error in
the subjective value estimation by the expert. Kotiah and Wallace (1973) use a maximum
entropy approach to draw the conclusion that the (single) distribution for completion time
should be a member of a family of truncated normal distributions, but of course, the truncated
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normal distribution has skew zero, which is not what most practitioners assume to be
true for the a priori distribution of project completion times. The debate between Sasieni
(1986) and Littlefield and Randolph (1987) shows that the PERT assumptions are perhaps
more defensible than previously thought. For instance, Kamburowski (1997) argues that
restriction to a certain type of beta distribution yields the PERT assumptions.

A number of researchers, Davidson and Cooper (1976), Megill (1984), Moder and
Rodgers (1968), Pearson and Tukey (1965), as well as Perry and Greig (1975), have proposed
variations of the basic PERT formula, either by changing the weights in the approximation
formula or by replacing the mode by the median and the optimistic and pessimistic value for
the 5% or 10% quantile and the 95% or 90% quantile. Keefer and Bodily (1983) explored the
validity of these three-point approximations for the mean and of two point approximations
for the variance calculating the maximum and average absolute and relative error with a
test set of distribution given in terms of shape parameters. Some researchers derived more
complex approximation formulae, but we do not investigate their validity here. Farnum and
Stanton (1987) find that if the mode is close to the optimistic or pessimistic value, then the
PERT approximation becomes poor and propose an alternative estimator that is a quotient
of two cubic functions of the mode. Golenko-Ginzburg (1988) questions an assumption
in the derivation of the original PERT formula on the standard deviation of the a priori
distribution and derives an alternative set of weights. Troutt (1989) proposes to use the
median instead of the mode in the PERT formula and finds that it then it becomes a good
approximation regardless of assumptions on the distribution. Lau, et al. (1996) propose a
5- or 7-fractile alternative. Premechandra (2001) proposes a cubic formula using the mode
and the extreme values. Mohan et al. (2007) propose to model the distribution with the
lognormal distribution and derive an approximation formula involving the logarithm of the
optimistic or pessimistic value and an estimate of the variance. Shankar et al. (2010) pick up
on Golenko-Ginzburg’s work and obtain another alternative set of weights for the original
PERT approximation.

Kotz and van Dorp (2004) wrote a whole book about families of distribution that have
properties similar those of to the beta distribution. In this paper, we limit ourselves to the
Kumaraswamy distribution (Kumaraswamy 1980) that is just as good a candidate for the true
distribution of activity times than the beta function. For modeling completion times, Kotiah
and Wallace (1973) propose the doubly truncated normal distribution and Johnson (1997)
the use of the triangular distribution. Monhor (1987) proposes the Dirichlet distribution
and as we have seen, Mohan et al. (2007) propose a lognormal distribution. Hahn (2008)
criticizes the expert’s inability in PERT to specify variance without changing the range
and proposes to use a mixture distribution of the uniform and the beta-distribution. Hahn’s
criticism lets Herrerías-Velasco et al. (2011) propose a different parametrization of the beta
distribution. Trietsch et al. (2012) also advocate the log-normal distribution, but compensate
for the possibility of the Parkinson effect by switching to a Parkinson distribution with
log-normal core. Hajdu and Bokor (2014) find that the use of different distributions has less
effect on the completion time of a PERT network than a 10% inaccuracy in the estimation
of the PERT parameters.

3 Properties of the Beta and Kumaraswami Distribution

The beta distribution is a parameterized family of distributions on the interval [0,1]with two
shape parameters a and b , which has been used in many fields. Its probability distribution
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Figure 1: Probability density functions for various beta distributions.

is given in terms of the Gamma-function:

pdfbeta(x) =
G(a +b )
G(a)G(b )

x
a�1(1� x)b�1

The beta distribution has mean

µbeta(a,b ) = a
a +b

and variance
s2

beta(a,b ) = ab
(a +b )2(1+a +b )

The skewness of a distribution measures its degree of asymmetry. If the right tail (towards
1) is more pronounced than the left tail (towards 0) then the function has positive skewness,
otherwise a negative one. A skew of 0 indicates a symmetric distribution. For the beta
distribution, it is given by

skewbeta(a,b ) =
2(b �a)

p
a +b +1

p
a
p

b (a +b +2)

As b �a is the only factor in this representation that can be negative, the skew is positive
if and only if a < b . In the literature, the latter condition is often used for positive skew.
The kurtosis of a distribution measures the peakedness of a distribution. In the case of the
beta distribution, it is given by

kbeta =
3(a +b +1)

�
2(a +b )2 +ab (a +b �6)

�

ab (a +b +2)(a +b +3)

The mode (the most likely value) of a beta distribution is given by

modebeta =
a �1

a +b �2
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Figure 2: Probability density functions for various Kumaraswamy distributions.

The Kumaraswamy distribution is also a parameterized family of distributions on the
interval [0,1]with two shape parameters a and b , which has also found wide-spread use. The
Kumaraswamy distribution was proposed (Kumaraswamy 1980) to model random variables
in hydrology and is still used for modeling the storage volume of a reservoir (Fletcher, S.
and Ponnambalam, K. 2008). It has many points in common with the beta distribution, for
example, it is parameterized by two values and the general shape depend on these parameters
in a similar way, but since it has a simple expression for the distribution function, generating
random values according to the distribution is much simpler (Jones 2009). Mitnick and
Baek (2013) propose a reparametrization of the Kumaraswamy distribution (a different set
of shape parameters) based on the median that yields simpler expressions for its mean and
variance.

The Kumaraswamy distribution has probability density

pdfkuma(x) = abx
a�1(1� x

a)b�1.

The distribution has mean

µkuma(a,b ) =
bG

�
1+ 1

a
�

G(b )
G
�
b + 1

a +1
� ,

variance

s2
kuma =

G
�
1+ 2

a
�

G(b +1)
G
�
b + 2

a +1
� �

G
�
1+ 1

a
�2 G(b +1)2

G
�
b + 1

a +1
�2 ,

skew
skewkuma(a,b ) =

bG(b )
✓

a3G( a+3
a )

G(b+ 3
a +1)

� 6aG( 1
a )G( 2

a )G(b+1)
G(b+ 1

a +1)G(b+ 2
a +1)

+
2G( 1

a )
3G(b+1)2

G(b+ 1
a +1)3

◆

a3
✓

G(1+ 2
a )G(b+1)

G(b+ 2
a +1)

� G(1+ 1
a )

2G(b+1)2

G(b+ 1
a +1)2

◆3/2 .
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The kurtosis can also be given in a closed form formula in terms of the Gamma function,
but the formula is just too large and to unwieldy for us to present it here. The mode (most
likely value) is given by

modekuma = (
a �1

ab �1
)1/a .

4 Defining test sets of distributions

Keefer and Bodily evaluated a variety of three point approximations for mean and variance
using a predefined set of beta-distribution, which they acclaimed to be the “gold-standard”.
While we share these sentiments, we replace their intuitive selection by one based on shape
parameters, namely by setting an upper limit for kurtosis and skew. As they do, we assume
a positive skew. As it turns out, the exact limits do not greatly matter as long as we consider
three-point approximations where the weights for the optimistic and pessimistic estimate
are equal.

The set of shape parameters obtained by limiting skew and kurtosis is a continuous set.
Since calculating maxima over these sets was too difficult, we discretized these sets by only
considering shape parameters that are integer multiples of 1/2. Small shape parameters
(1/2 or 1) result in distributions that are not unimodal and were therefore excluded. Finally,
and this is an arbitrary value, we impose an upper limit on the shape parameters of 60.

We then defined four finite families of distributions, with shape parameters

(a,b ) 2 {(a/2,b/2)|3  a,b  120}

by demanding that the kurtosis k is smaller or equal to 3.0 and the skew s satisfies either
0 < s < 0.5, 0 < s < 0.7, 0 < s < 0.9. Additionally, we defined a fourth restriction by
demanding k < 4.0 and 0 < s < 0.9. We indicate the set of distributions by subscripts
and superscripts, for example, we write SK

s=0.9,k=4.0 for the latter set in the case of the
Kumaraswami distribution..

In the case of the b distribution, this gave us respectively |Sb
s=0.7,k=3.0| = 4450,

|Sb
s=0.9,k=3.0|= 4450, |Sb

s=0.5,k=3.0|= 4440, and |Sb
s=0.5,k=3.0|= 6460 pairs of parameters,

and in the case of the Kumaraswamy distribution, |SK
s=0.7,k=3.0|= 265, |SK

s=0.9,k=3.0|= 265,
|SK

s=0.5,k=3.0|= 247, and |SK
s=0.9,k=4.0|= 359 pairs of parameters. The first two sets in both

cases are equal.

5 Evaluation of Alternative Formulae

Three point approximations have an expert (or a group of experts individually or through a
consensus process) determine three values for the duration of a project or project task. PERT
calculates an expected mean for the duration of a project or a task from three estimates,
the most likely value and the two extremes. Since estimating the lowest and highest value
correctly is difficult, alternative approaches use quantiles. Most proposals in the literature
calculate the mean and the variance of the duration time using a weighted sum of the three
estimates.
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Figure 3: Maximum absolute and relative errors for a PERT-like approximation using b -
and Kumawasrami distributions with kurtosis k < 3.0 and skew s, 0 < s < 0.5, 0 < s < 0.7,
0 < s < 0.9 as well as with kurtosis k < 0.4 and skew s, 0 < s < 0.9 in dependence on the
weight r for the optimistic value.

5.1 Approximation of the mean

We first consider PERT-like approximation formulae for the mean of the distribution. A
PERT-like formula uses as the three value an optimistic value, a pessimistic value, and the
most likely value for the project duration. We normalize the interval of possible project
length to [0,1]. In the case of PERT-like formulas, the optimistic value is then always 0 and
the pessimistic value is always 1. The PERT formula (Malcolm et al. 1959) then becomes
µ = 2

3 xm + 1
6 and any similar formula becomes µ = (1�2r)xm +r with a weight r for the

extreme values. We determined the maximum absolute and relative error of the estimator
for all r 2 {0,1/100, . . .50/100} using the families of beta and Kumaraswamy functions
defined earlier. We give the results in Figure 3. Golenko-Ginzburg (1988) proposed to
change the weights to 2/13 = 0.153846, 9/13, and 2/13 and Shankar and Sireesha (2010)
to 5/27 = 0.185185, 17/27, and 5/27.

We notice that the goodness of the approximation depends on the kurtosis, but only
slightly on the distribution, and is never very good. The relative error is at best around 20%.
We also note that the optimal weight differs if we want to minimize the absolute and the
relative error. Given the wide variations, a compromise value for r would be around 10%,
that is, we would propose to use the formula

µest =
1

10
x0 +

8
10

xm +
1

10
x1.
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Figure 4: Maximum absolute and relative errors for a Moder-Rodgers-like approximation
using b - and Kumawasrami distributions with kurtosis k < 3.0 and skew s, 0 < s < 0.5,
0 < s < 0.7 (medium), 0 < s < 0.9 in dependence on the weight r for the optimistic value.
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Figure 5: Maximum and relative errors for a Davidson-Cooper type three point
approximation evaluated using b - and Kumawasrami distributions with kurtosis k < 3.0
and skew s, 0 < s < 0.5, 0 < s < 0.7, 0 < s < 0.9 as well kurtosis k < 4.0 with skew s,
0 < s < 0.9 in dependence on the weight r for the optimistic value.
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Figure 6: Maximum and relative errors for a Swanson type three point approximation
evaluated using b - and Kumawasrami distributions with kurtosis k < 3.0 and skew s,
0 < s < 0.5, 0 < s < 0.7, 0 < s < 0.9 as well kurtosis k < 4.0 with skew s, 0 < s < 0.9 in
dependence on the weight r for the optimistic value.

The weights 1
6 ⇡ 0.1666, 2

3 ,
1
6 chosen for the original PERT formula are not especially bad,

but clearly not optimal. Our results indicate that the optimal r decreases with a wider set
of distributions. In Figure 3, we indicated the set against which we measured to show that
the set with higher kurtosis not only results in worse approximations, which is obvious, but
also demands lower weights for the optimal and pessimistic values. Below, we study three
point approximations were the weights for the optimal and pessimistic values are different.

Moder and Rodgers (1968) propose to use the PERT formula for the three point
approximation of the mean, but substitute the 5% and 95% quantile for the pessimistic and
optimistic value, i.e. they approximate

µest =
1
6

x(0.05)+
2
3

xm +
1
6

x(0.95),

where x(0.05) and x(0.95) are the 5% and 95% quantile, respectively. Seven years later,
Perry and Greig (1975) proposed modifying the weights leading to the estimate

µest =
1

2.95
x(0.05)+

0.95
2.95

xm +
1

2.95
x(0.95)

The weight for the 5% and 95% quantile is almost doubled in the latter formula. We use
the same type of evaluation as before and present the results in Figure 4.

We can observe that the PERT-weights from Moder and Rodgers are far from yielding
a good approximation. Using our reference sets, the Perry and Greig weight for the 5% and
95% quantile is too low, we should increase it from 0.338983 to 0.36, but as the optimal
weight increases with more generous bounds on kurtosis and skew, their value is defensible.
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In any case, this formula gives more accurate estimates for the mean than the PERT formula.
We observe that the determination of the weight can be done within a boundary of±0.02 and
that the difference between using the Kumaraswamy distribution and the beta distribution
is relatively slight. The reference set against which we test has about the same influence.
For a Moder-Rodgers-like mean estimator, we therefore propose

µest = 0.36x(0.05)+0.28xm +0.36x(0.95)

with reasonable hope for an absolute error smaller than 0.07 of the mean and a smaller than
2% relative error. This increase in the accuracy of the estimate is paid for with using less
intuitive values that the expert has to determine, namely using the 5% and 95% quantile.

A while ago, Davidson and Cooper 1976 used the 10% and 90% quantiles x(0.10) and
x(0.90) as well as the most likely value for an estimation

µest =
1
4

x(0.10)+
2
4

xm +
1
4

x(0.90)

which Keefer and Bodily (1983) modified to

µest = 0.16x(0.10)+0.68xm +0.16x(0.90).

Using our four test sets each for the distribution, we obtained the values in Figure 5. For the
relative error, we observe that the test set is now important, but that the optimal weight is
ropt ⇡ 0.43. The relative error is then less then 1 %, which appears to us to be an excellent
approximation. Based on these results, we propose to use

µest = 0.43x(0.10)+0.14xm +0.43x(0.90)

Swanson proposed in Megill (1984) to use the 10%. 50% and 90% quantiles for an
estimation

µest = 0.30x(0.10)+0.40x(0.50)+0.30x(0.90)

Our results depicted in Figure 6 suggest that a slight improvement can be made by setting

µest = 0.29x(0.10)+0.42x(0.50)+0.29x(0.90)

though the tendency for distributions with higher kurtosis and skew is towards the weights
proposed by Swanson.

5.2 Approximations of the mean with three different weights

Up till now, we used three point approximations that used two different weights, one for
the optimistic and the pessimistic value, and another one for the most likely value. In our
evaluation however, we assumed that the (unknown) true distribution of the project length
has a positive skew and a limited kurtosis. A positive skew means that the optimistic value
is closer to the most likely value and to the mean than the pessimistic value. If we use a
three-point approximation with the same weight for the pessimistic and the optimistic value,
then we do not profit from the assumption of a positive skew.

We therefore tried to improve the PERT-like approximation formula using two different
weights for the optimistic and the pessimistic value. Since the sum of the three weights has
to be one, our set of formulae for evaluation takes the form

µest = rx0 +(1�r �s)xm +sx1
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Figure 7: Three dimensional plot of the absolute error for a PERT-like three weights
approximation using a test set of beta distributions with kurtosis k < 3.0 and skew s,
0 < s < 0.9.

After normalizing (setting x0 = 0,x1 = 1), this becomes

µest = (1�r �s)xm +s

As we can see in Figure 7, where we plot the absolute error against the set Sb
s=0.7,k=3.0,

the v-shape curves obtained by setting r = s become now a v-shape valley. The best
approximations are obtained by letting s depend almost linearly on r , but the exact value
of r almost does not matter.

In Figure 8 we present contour graphs for evaluation of the relative error by testing
against families of the beta distribution. The darker the color, the lower is the relative error.
These graphs give the same result: For best approximations, the value of s depends almost-
linearly on r , but varying r and therefore s does not vary the quality of the approximation
much. The relationship between the optimal choice of s given r and the best approximation
depends heavily on the reference set chosen. This is a disappointing result, as it implies
that no PERT-like formula with three different weights can approximate the mean well. For
lack of a better alternative, we are stuck with the traditional type of 3-point estimate.

5.3 Approximation of the variance

Pearson and Tukey (1965) use the 5% and 95% quantiles to estimate the variance using the
formula

s2
est =

(x(0.95)� x(0.05))2

3.252

Moder and Rogers (1968) modified the constant to 3.20. We investigate this type of two-
point approximation against our reference set, using the formula

s2
est =

(x(0.95)� x(0.05))2

r2

We give the results in Figure 9. Against these reference sets, the original value for the weight
r proposed by Pearson and Tukey fares better.
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Figure 8: Contour graphs for the relative error for a PERT-like three point approximation
of the mean using three different families of beta distribution, namely with kurtosis k < 3.0
and skew 0 < s < 0.7 (top left), with k < 3.0 and 0 < s < 0.5 (top right), and with k < 4.0
and 0 < s < 0.9 (bottom left). The final graph is a blowup of the previous one.
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Figure 9: Maximum and relative errors for a Pearson-Tukey type two point approximation
of the variance evaluated using b - and Kumawasrami distributions with kurtosis k < 3.0
and skew s, 0 < s < 0.5, 0 < s < 0.7, 0 < s < 0.9 as well kurtosis k < 4.0 with skew s,
0 < s < 0.9 in dependence on the weight r .

Moder and Rodgers (1968) also proposed to use instead the 10% and 90% quantile for
the estimate of the variance

s2
est =

(x(0.90)� x(0.10))2

2.702

which later was modified by Davidson and Cooper (1976) to

s2
est =

(x(0.90)� x(0.10))2

2.652

Our calculations with results in Figure 10 reveal that both values are defensible.

6 Conclusion

Estimation of completion time of a project or of tasks in the project remains one of the most
difficult, but also most critical duty of an IT project manager. Expert judgment has remained
popular and is often improved by three-point approximation for the mean and two-point
approximation for the variance of task completion times.

Despite their continued popularity, there is no good theoretical foundation for this
formulae. We investigated whether their goodness depends on the particular choice of a test
distribution, which is usually the beta distribution with non-negative skew. We found that the
approximation is never superb, but in general good if we use both beta and Kumaraswamy
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Figure 10: Maximum and relative errors for a Moder-Rodgers two point approximation
evaluated using b - and Kumawasrami distributions with kurtosis k < 3.0 and skew s,
0 < s < 0.5, 0 < s < 0.7, 0 < s < 0.9 as well kurtosis k < 4.0 with skew s, 0 < s < 0.9 in
dependence on the weight r .

distributions to test the fit, especially if we use the 10- and 90-percentile instead of the
pessimistic and optimistic value. We also have shown that we cannot improve the formulae
by giving different weights to the optimistic and pessimistic values.

Our conclusions are based on the central assumption in the derivation of three-point
formulae, namely that the support of the distribution is bounded so that there exists a
minimum and a maximum value. We can certainly imagine that the true a-priori distribution
has an infinite tail. Finally, all three-point formulae do not take risk into account. Risk can
enter two-fold. A risky sub-project makes it hard for the expert to come to good conclusions,
but it should also have a different a-priori distribution with a large, possibly infinite tail.
Addressing these issues has to be left to future works.

If our assumption of a true a-priori distribution in the general shape of a beta distribution
is true, then three- and two-point estimates give reasonable values, even if it is not in fact
a beta distribution. We see no reason to abandon these simple methods for more involved
methods. The gain of using more involved methods should become invisible because of the
intrinsic weaknesses of expert judgments that are, after all, based on limited experience and
without the benefits of hindsight.
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