
Design Issues of Shingled Write Disk for Database
Table Implementation

Soror Sahri
Université Paris Descartes

Laboratoire d’Informatique Paris Descartes
45 Rue des Saints Pères

75270 Paris, France
Soror.Sahri@ParisDescartes.Fr

Thomas Schwarz, S.J.
Universidad Católica del Uruguay

Informática y Ciencias de la Computación
Av. 8 de Octubre 2738

11600 Montevideo, Uruguay
TSchwarz@Calprov.org

Abstract—To maintain the continuing growth of bit density
in magnetic recording media, the disk industry will have to
change technologies. Shingled write disks are expected to be
the next generation of high capacity magnetic disks and already
in prototype. Shingled write technology is not disruptive at the
level of disk design and manufacturing, but as shingled writes
prevent updates in place, the technology is disruptive at the level
of usage. It is possible to design a disk device driver or disk
firmware that allows a shingled write disk to be used as a drop
in replacement for traditional disks. Database implementations
however have traditionally bypassed the file system and accessed
the disk directly in order to achieve better performance. We
discuss here adaptation of B+-trees and linear hash tables to
shingled write disk to support indexed database tables and
secondary indices. Our proposal is based on dividing the disk in
low-capacity Random Access Zones (RAZ) and high capacity Log
Access Zones (LAZ). The LAZ use the shingled disk effectively
while RAZ places guard bands around each track in the zone in
order to regain the capacity of in-place updates at the costs of
loosing capacity.

I. INTRODUCTION

Disk drive capacity has grown from 5MB for the IBM
RAMAC 305 in 1956 to 1TB disks in 2013. To continue this
growth rate, the current design of disks needs to change. The
superparamagnetic effect for perpendicular recording stands
at about 1 Tb/in2 [50]. To overcome this boundary, one can
change the medium or one can change the strength of the
magnetic field. Solutions using both approaches are actively
sought and the likely road map for the industry includes both,
including Bit Patterned Media Recording (BPMR) and Heat
(or thermally) Assisted Magnetic Recording (HAMR). Even
before the introduction of these changes which will transform
the design and manufacturing process of magnetic drives, we
will most likely see the introduction of shingled write disks.
Seagate is starting to ship shingled write disks in 2014. The
write head in a shingled write disk has a stronger magnetic
field that is assymetric, focused in one direction and diffused
in the other. Writing with the assymetric write head destroys
data in tracks parallel to the one being written but only in one
direction. A shingled write disk overlaps the currently written
track with the previous track, leaving only a relatively narrow
strip of the previous write track untouched. While this remnant
is only a fraction of the written track, it is still sufficiently wide

to be read with current GMR heads. The overall results are
tracks placed closer together. Since a stronger magnetic field
is used, the data density inside a track is also higher. The
combination of higher track and higher bit density in a track
gives a density increase estimated conservatively to be at least
2.3 times [51]. Both BPMR and HAMR are expected to use
shingled writing.

In comparison with the development and manufacturing
impact of BPMR and HAMR, the current design and man-
ufacturing process for shingled write disks does not change
dramatically. The main burden of their introduction will be on
the user of these devices. Since current disks allow writes at
a random location, a direct drop-in replacement of a current
disk by a shingled write disk is not possible. A possible
solution could use a block translation layer that gives the view
of a traditional disk, but reassigns dynamically logical block
addresses to physical block addresses. This is similar to a
Flash Translation Layer (FTL) used for flash based devices
to mask the peculiarities of the read-erase-write cycle in flash
and present an interface in which individual pages are read
and over-written. More likely is a combination with Non-
Volatile Random Access Memory (NVRAM) such as a flash-
based solid state disk, possibly packaged as a single device,
a “combo-disk”. Using NVRAM as a large cache, only cold
data needs to be stored on the shingled write disk.

Historically, database implementers have circumvented the
file system in order to obtain the performance needed for
transaction support. The work of Sears et al. shows that access
to binary objects stored in a database is better if the object
size is less than 256 KB and access for objects through the
file system is better for objects larger than 1 MB [48]. There
is no reason for us to assume that this difference is going to
change. Databases just do not generate a “normal” load for
which file systems are designed. The development of storage
technology with larger RAM, the introduction of intermediate
Non-Volatile Random Access Memory (NVRAM) such as
flash and in the future Storage Class Memories (SCM) is
pushing many database products towards using disks not at
all or only as an archival medium. Often, the limiting factor
for a database is not the storage capacity of a disk but its I/O
bandwidth, which has not grown at the same rates as capacity.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2247

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.10.2247-2257

We can say colloquially that a database needs actuators, not
platters. As database applications and sizes widely differ, we
assume that a small, but in absolute numbers large group of
databases will still continue to use magnetic disk because of
their attractive GB per dollar ratio. Many other will migrate
towards in-memory and using NVRAM, especially SCM once
they become available.

In this paper, we investigate the design changes necessary
for databases wishing to use a shingled write drive with little
or no support from NVRAM. We argue that databases as
applications will still continue to use the shingled drive as a
raw device and should use specialized data structures in order
to do so. We propose an adaptation of the B+-tree and of
linear hashing to shingled writing. Of course, a database needs
the disk for much more than just storing tables. Other needs
such as the creation and management of temporary tables or
logging are as efficient using shingled write disks as they are
for current disks. In fact, since shingled write disks do not
allow as much fragmentation, we can even expect that writing
and reading large, temporary tables or writing and reading
logs is more efficient in shingled write disks. Because of time
and space constraints, we have to postpone an experimental
evaluation of the proposed data structures for future work.

II. SHINGLED WRITE TECHNOLOGY

With the adoption of NAND flash technology for storage
as Solid State Disks (SSD), the role of magnetic disks is
slowly changing towards a more archival role as the medium
of choice for bulk storage. However, for the near future, the
bulk of stored information will be magnetically recorded on
hard disks because of their high data density and their low cost.
The disk drive industry is striving to maintain the high rate of
annual increase in areal density of 30% and recently of 40%
per year [16]. Further increase (from 500 Gb/in2 to beyond
1Tb/in2) will soon be limited by the super-paramagnetic effect,
which creates a trade-off between the media signal-to-noise
ratio, the writeability of the media by a narrow track head,
and the thermal stability of the media. Chan et al. call this
the media trilemma [8], following the practice at Seagate.
Various approaches to overcome the media trilemma have
been proposed; of these, shingled writing offers a solution
that can be implemented without solving major technological
obstacles. In any case, the current predictions for the evolution
of magnetic drive technology presume shingled writing first
and then in conjunction with other methods of increasing data
density [50].

One possible approach to address the super-paramagnetic
limit is to radically change the makeup of the magnetic layer,
as is done in Bit Patterned Media Recording (BPMR) [43].
BPMR stores individual bits in lithographically defined “mag-
netic islands,” essentially densely stippled protrusions. In
addition to the challenge of manufacturing surfaces with such
islands, writes need to be synchronized with the location of
the islands.

A second approach to increasing density temporarily
changes the receptivity of a standard magnetic layer by “soft-

Fig. 1: Operation of perpendicular magnetic recording. In
contrast to longitudinal recording, the magnetic field has to
enter the recording track twice.

Fig. 2: Corner write head for shingled writes.

ening” the magnetic material, making it easier to magnetize.
This can be done with microwaves (Microwave Assisted Mag-
netic Recording—MAMR, [59]) or by heating the writing area
with a laser (Heat Assisted Magnetic Recording— HAMR [6],
[30], [46], or Thermally Assisted Magnetic Recording [38]). A
temporary softening of the magnetic media allows the use of
smaller magnetic fields, which in turn allows a smaller area
to be magnetized as the softened region can be smaller than
that affected otherwise by the magnetic field.

Both approaches offer significant construction and manu-
facturing challenges and require significant changes in current
magnetic disk design.

While early hard drives used an electromagnet for writing
and reading, separate read heads using Magneto-Resistance
(MR) and Giant Magneto-Resistance (GMR) came into use
starting in 1996 and 2000, respectively. Write heads need to
control the magnetic field whose flux emanates from the head
and needs to return to it without erasing previously written
data. While perpendicular recording (Fig. 1) allows much
more stable magnetization of the magnetic grains (and hence
higher data density), the flux not only has to enter through the
recording media in order to do its desired work, but also has to
return back through the media to the head. In order to protect

2248 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

already stored data, the return flux needs to be sufficiently
diffused, which limits the power that the magnetic field can
have.

A weaker magnetic field allows a good focus of the flux
and protects previously written data well, but lacks strength to
magnetize permanently. A stronger magnetic field magnetizes
permanently, but needs larger track widths to protect adjacent
data. Shingled writing addresses this problem by allowing data
in subsequent, but not prior, tracks to be destroyed during
writes. Shingled writing uses a write head that generates an
asymmetric, wider, but much stronger field that fringes in
one lateral direction, but is shielded in the other direction.
Figure 2 shows a larger head writing to track n, as used
by Greaves et al. in their simulations [21]. Because of the
larger pole, the strength of the write field can be increased,
a more stable (but harder to write) magnetic medium used,
which together allows a further reduction of the grain size. The
sharp corner-edge field brings a narrower erase band towards
the previous track, enabling an increase in the track density.
Shingled writing overlaps tracks written sequentially, leaving
effectively narrower tracks where the once-wider leading track
has been partially overwritten. Reading from the narrower
remaining tracks is straightforward with current technologies.
Taken together, smaller grain size and increased track density
result in an areal density increase by a factor of at least 2.5 [51]
and possibly higher (3–5) according to our industry sources.
Greaves et al. modeled shingled writing and found a maximum
density of 3 Tb/in2 [21].

While BPMR, HAMR, and MAMR offer daunting chal-
lenges at the level of device engineering, the bulk of the
challenges and opportunity for shingled writing lie at the sys-
tems architecture level. The major, but significant, functional
difference of shingled writing is that in-place overwrites of
data in a track destroy the data in subsequent tracks.

With or without shingled writing, we need to avoid erasing
data on adjacent tracks when writing (inter-track interfer-
ence, and this limits the density of tracks. Two-Dimensional
Magnetic Recording (TDMR) [7], [26], [27], [8] turns this
inter-track interference from an obstacle into an instrument.
Using more sophisticated signal processing [27], [57] and
write encoding, TDMR reads from several adjacent tracks and
decodes the signal from the target track taking account of
inter-track interference. In a traditional disk architecture with a
single read head, reading a single sector with TDMR involves
reading the sectors on adjacent tracks, requiring additional
disk rotations. To avoid this problem, TDMR disks could
use multiple read heads on the same slider, thus restoring
traditional read service times. TDMR presupposes shingled
writing, but shingled writing can be used without TDMR.
While shingled write disks already exist in prototype, much
research and development is still needed to assess the viability
of TDMR.

Shingled writing can be used alone or in conjunction with
other new magnetic recording technologies. Shiroishi and col-
leagues recently proposed a possible transition path to incor-
porate these future technologies [50]. Perpendicular Magnetic

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

G
U
A
R
D
B
A
N
D

Stretch Stretch

Log Access Zone Random Access Zone

Tracks

Fig. 3: Shingled write disk layout with Log Access Zone
(LAZ) and Random Access Zone (RAZ).

Recording (PMR) reaches densities of up to 1 Tb/in2. The next
generation of technologies might use BPMR in conjunction
with HAMR or MAMR and Shingled Write Recording, with
a transitional use of Discrete Track Recording (DTR) as a
predecessor to BPMR. This set of technologies could reach
5 Tb/in2. With TDMR in the mix, they see the possibility
of densities of 10 Tb/in2. The Information Storage Industry
Consortium targets this density for 2015, enabling 7 TB and
more in a single 2.5” disk at a cost of about $3/TB [28], [29].

Whatever the challenges involved in maintaining the road
map, shingled write disks are about to ship. Other approaches
(BPMR, HAMR, MAMR, TDMR) presume this technology
and shingled writing appears to be feasible without major
changes in technology. The influence of flash storage and in
the future of Storage Class Memories (SCM) [29] will push
magnetic recording towards a more archival role. As disks are
a mass-manufactured commodity, we consider it unlikely to
see continuous development of non-shingled write disks, once
this technology has become adopted.

III. RELATED WORK

A. Using Shingled Write Disks

The principal challenges for shingled write disks do not
lie in the design and manufacturing of the drives themselves,
but in their usage as replacements for standard hard drives.
Because shingled write recording destroys information on
tracks in one direction, traditional file systems cannot use shin-
gled write disks without adjustment. A naive solution to the
problem of destructive writes is a read-modify-write operation,
which reads a portion of data from the disk, modifies parts
or all of it, and then rewrites the whole portion back to the
disk. Without several tracks without valid data, the portion that
needs to be read could be a whole disk surface [5].

Kasiraj et al. propose organizing the disk into bands, where
each band stores a single file such as a large multimedia
file [24]. Bands are separated by a guard band of k tracks, so
that a write to the last track in a band does not destroy the data
in the first track of the subsequent band. In general, assigning
a single file to a band is neither necessary nor optimal.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2249

© 2014 ACADEMY PUBLISHER

1.6 1.8 2.0 2.2
L

5

10

15

! Capacity

k"4

k"5

k"6

Fig. 4: Impact of introducing RAZ on the capacity gain L by
shingled writing depending on the size k in tracks of the guard
band.

To solve the problem of the read-modify-write in shingled
writing, we can use some type of remapping between the
addresses of physical blocks and the logical blocks that form
the user interface. Cassuto et al. [5] propose two indirection
methods for shingled write recording. The first method uses
a cache located on disk and organized as a set-associative
cache. A number of bands (Cassuto et al. call them native
regions) map to a single band in the disk cache, which is
itself a band, though possibly smaller. A write goes directly
to the cache region. If the cache region becomes full, it is
garbage-collected, which updates the bands mapped to that
cache region with a read-modify-write. A read first seeks in
the appropriate cache band and if that is unsuccessful, in the
data band. Depending on the cache size ranging from 1% to
10%, Cassuto et al. observed a write overload of 1.5 - 9 and
a total slowdown between 2 and 15. Read performance for
sequential blocks also can suffer notably degradation.

By organizing bands as logs (a layout also proposed by
Amer et al. [2], [3]) with a guard band between the beginning
and the end of the log, Cassuto implements a second cache
level between the set-associative disk cache and the data
stored in fixed position on the shingled disk. At the cost
of higher complexity, this design increases performance. The
performance increase is based in great part by the lower cost
of garbage collection of cache bands.

Amer et al. [2], [3] propose to adapt the design of log-
structured file systems for shingled write disks. They introduce
the notion of a Random Access Zone (Fig. 3) in addition to
Log Access Zones (LAZ). A LAZ consists of bands that store
a log, where head and tail are separated by an additional guard
band. A RAZ consists of a single track band, or with other
words, a single track with several guard tracks on both sides.
This enables in-place change of blocks in the RAZ. Since the
guard tracks protecting a single RAZ track cannot be used to
store data, the use of RAZs diminishes the usable capacity of a
shingled write disk. We define the capacity gain as the ratio of
disk capacity with shingled writing and disk capacity without
shingled writing and denote it by L. Tagawa and Williams

project a capacity gain of α = 2.3 [51]. Devoting a percentage
for RAZ decreases L. Fig. 3 gives the relation between L and
the percent of capacity devoted to RAZ for various width k of
guard bands. It shows that reserving a small portion such as
1% of a platter surface to RAZ does not decrease the capacity
gain by much. Of course, introducing bands and using logs
within the bands introduces additional guard tracks that lowers
the overall capacity gain further, (see below, Fig. 9).

B. Data Structures Tailored to Storage Architectures
Many data structures were developed for RAM only or for

the classical memory hierarchy consisting of virtual memory
and disk. The performance characteristics of other storage
media frequently requires adjustments or even redesign of data
structures. The same is true for shingled write disks.

Tapes consists of several parallel tracks on which blocks
of data are written consecutively. They exhibit relatively large
random access times compared to disk drives. Even though
there is work on how to best use tape as a storage device
(HPTFS [58]), it does not apply to the append only structure
of shingled write disk, as metadata on tape can be updated
in place. Write Once Read Many (WORM) devices such
as optical disks did not allow changing any information
written. Indirection is used heavily in the development of file
systems and data structures [12], [13], [15], [36], [41], [42],
[52]. Shingled write disks differ in offering the possibility to
overwrite and reuse written space.

Flash memory can only be written in complete pages. A
page needs to be erased before it can be written again. This
operation clears all pages in an erase block consisting of
typically 64 or 128 4KB-pages. Each erase-write operation is
slightly destructive and frequently erased pages start to display
high read bit-error rates and become eventually flagged as
unusable. Most flash memory use a Flash Translation Layer
(FTL) in order to achieve “wear leveling” (all pages have about
the same number of writes) and to mask failed pages [14].
Additionally, writes are often considerably slower than read
operations. A number of flash specific file systems exist (for
example [10], [22], [34], [54]. Data structures for use with
flash memory can be of two kinds, they can be “flash-aware”
but used in conjunction with FTL, or they can be built on
“raw” flash memory taking care of wear leveling themselves.
For example, Wu et al. [56] uses a buffer structure in RAM
in order to implement a B-tree. Kang et al. [23] propose the
µ-tree, a variant of the B-tree, that allows any update (even
if it should percolate to the root) by writing a single page,
which contains a path from the root to the node changed. As
information of several nodes has to fit in the same page, the
height of a µ tree can be higher than that of the equivalent
B+-tree, but the performance is not noticeably slower. Li et
al. [33] propose the FD-tree that is a variant of the B-tree that
stores the nodes below the root in continuous runs. We assume
that the future will bring a large scale migration of databases
to using flash and later storage class memory. Databases that
use flash profit if their are being made “flash-aware” as is done
with the Flash-based DBMS [31], with FlashDB [39], et cet.

2250 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

A variety of groups has proposed to build databases using
the principles of log-structured file systems [25], [40]. The
great advantage of log-structured file systems [44], [45], [49]
is the speed of writes as all writes are bundled and directed to
the end of a log. The disadvantage is the cleaning necessary to
reclaim the space occupied by stale data and the potential for
ineffective in order reads (for example when scanning a table).
Even a database that stores data in logs still uses a traditional
disk with its capacity of in-place updates and existing imple-
mentations cannot simply be ported to shingled write disks.
For example, the design of Graefe’s write-optimized B-trees
[17] stores data in logs but still uses in-place updates of index
nodes. In this paper, we follow his strategy for write-optimized
B-trees to design a B+-tree for shingled write disks.

IV. LAYOUT FOR SHINGLED WRITE DISKS

Implementers of databases have traditionally shunned access
to storage systems through the operating system and have
preferred to use direct access for performance reasons [48].
The interface offered by most storage devices is primitive,
modeling the disk as an array of Logical Block Addresses
(LBA). Internally, an LBA is translated to a Physical Block
Address (PBA). This translation also serves to mask faulty
blocks, which are mapped to spare blocks on a track or
possibly even to a spare track. We feel that the introduction
of shingled writing presents a rare opportunity to change the
system-disk interface. However, changes in a standard are dif-
ficult and cannot anticipate or support all usage patterns. The
industry will aim at least for an efficient implementation of the
current interface in order to facilitate a “drop-in” substitute,
which could consist of a shingled drive coupled with a large
flash-based cache. Clearly, any database implementation can
profit from the performance and durability of NVRAM such
as flash or SCM, whether it is provided in a “combo-disk” or
separately. The limited number of erase-write cycles of flash
might however limit the life-expectancy of a combo-disk.

While the standard interface between system and shingled
write disk might be changed so that the system can be aware of
the layout of tracks, we do have to assume this capacity in what
follows. It becomes necessary to reconstruct the track layout
in a disk to define RAZ and LAZ and define the minimal
guard band between tail and head of a log in LAZ. Modern
disk use zoning (zoned constant angular velocity) to vary the
number of blocks in a track. A track in a zone closer to the
center is shorter and cannot store as much data as a track in a
zone on the outside. Even for traditional disks, it is possible to
extract the layout from current disks through observation and
timing of disk commands [1], [47], [55]. This task becomes
considerably simpler for shingled write disks as we can make
use of the destructive nature of a block write on the adjacent
tracks in one direction. After extracting the layout of the tracks
and zones, the shingled write disk is no longer a black box
for the system but a gray box, allowing as often more efficient
use of the disk [4].

Modern disks mask block faults. While most of these faults
are caused by minute defects in the magnetic layer of the

surface created during manufacturing, some faults can appear
during the life time of a disk, for example through repeated
head crashes. Masking is done by allocating from the start
a certain number of spare blocks in each track and even a
certain number of spare tracks evenly distributed throughout
the disk. There is no reason to assume that this practice will
not be continued for shingled write disks. If we start using a
new shingled write disk, we reconstruct the layout including
remapped tracks and blocks. If during the life-time of the disk,
a block becomes faulty and is remapped to another block on
the same track, then this remapping does not disturb our RAZ
/ LAZ layout. It can happen that a track runs out of spare
blocks. In this case, the track needs to be moved to a nearby
spare track. In a shingled write disk, this cannot be done by
just copying the track to its new location, but involves moving
data from all tracks in-between. While more involved than in
traditional disk, this move does not disturb the partition of the
disk in various RAZ, LAZ, or the separation of tail and head
of a log. We conclude that masking new block errors does not
create problems for our proposal.

V. B+ TREE STRUCTURE FOR SHINGLED WRITE DISK

A database table supports a variety of operations such as
scanning, fast access, whether by primary or secondary key,
and often range queries by the primary key. The “work horse”
for the implementation of database tables is the B-tree in its
many variants such as the well-known B+-tree [9]. A page
pool in RAM contains recently accessed disk blocks. To allow
transactional guarantees, we assume traditional write-ahead
logging of content changes and structural changes in the tree.
We also assume frequent checkpointing where dirty pages
from the pool are written back to the shingled write disk.

Efficient implementations on shingled write disks can make
sparing use of data units that can be updated in place, either in
the RAZ, in the flash memory of a combo-disk, or in NVRAM
belonging to the system. We assume here that our system has
no NVRAM and uses only a shingled write disk for permanent
storage. This is appropriate for some, but certainly not for all
database applications.

A. Layout

A Random Access Zone (RAZ) consists of single track
followed by a guard band of k tracks. We can overwrite
its block in place without destroying any data because the
destruction is limited to the tracks in the guard band and
these do not store any data. A track contains 1MB or more of
information, depending on the location of the track. Zoning
allocates fewer blocks to an inside track than to an outside
track, but maintains a constant bit density. We store the upper
layers of the B-tree (“the index”) in RAZ, while we store the
lower part of the tree and at least all the leaf nodes in the Log
Access Zone (LAZ) Figure5. We recall that a block update in
LAZ consists in fetching the page into the page pool in RAM,
updating it, and eventually writing it back at the end of the
log in LAZ.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2251

© 2014 ACADEMY PUBLISHER

Level 1 Node Level 1 Node Level 1 Node Level 1 Node

Root Node

Leaf Nodes

…
RAZ

LAZ

Fig. 5: Assignments of index nodes to RAZ and leaf nodes to the log in LAZ.

TABLE I: Page Utility for B-tree nodes on shingled write disk after [18]

Page Size Records / page Node utility Access time Utility / time Access time Utility / time Access time Utility / time
Configuration: 6000 rot 2 MB track 8000 rot 2.5 MB track 10000 rot 2.5 MB track

4 KB 140 7 11.02 ms 0.647 9.76 ms 0.730 9.01 ms 0.791
16 KB 560 9 11.08 ms 0.823 9.80 ms 0.932 9.04 ms 1.010
64 KB 2240 11 11.31 ms 0.984 9.94 ms 1.120 9.15 ms 1.216

128 KB 4480 12 11.62 ms 1.044 10.12 ms 1.198 9.30 ms 1.304
256 KB 8960 13 12.20 ms 1.076 10.48 ms 1.253 9.58 ms 1.370
512 KB 17920 14 13.23 ms 1.068 11.13 ms 1.270 10.10 ms 1.399

1 MB 35840 15 14.81 ms 1.022 12.19 ms 1.241 10.95 ms 1.381
2 MB 76680 16 16.00 ms 1.008 13.38 ms 1.206 11.90 ms 1.355

50 100 150 200
a

50

100

150

200

250

300
Size

Efficiency 1
Efficiency 2

100 200 300 400 500 600 700
a

200

400

600

800

1000
Size

Efficiency 1 Efficiency 2

Fig. 6: Log size and read efficiencies after cleaning depending
on cleaning size a for a log of 240 (left) and 720 (right) nodes.

50 100 150 200
50

100

150

200

order

cl
ea
n 240

Log Length

100 200 300 400 500 600 700

100

200

300

400

500

600

700

order

cl
ea
n 720

Log Length

Fig. 7: Contour graph of log length for 240 and 720 nodes.
(Black represents 240 (left) and 720 (right).)

B. Node Size

Graefe [18] has updated Gray’s five minute rule [19], [20] in
2007. Gray and Graefe defined the utility of a B-tree node as
the binary logarithm of the number of records in a node. They
determine the optimal size of a B-tree index node by the ratio
of utility over access time. As nodes become larger, the access
time changes by an increase in the transfer time as the disk has
to rotate longer under the head until the complete head is read.
If we extrapolate the access times of current standard disks

50 100 150 200
50

100

150

200

order

cl
ea
n 240

Efficiency

100 200 300 400 500 600 700

100

200

300

400

500

600

700

order
cl
ea
n 720

Efficiency

Fig. 8: Contour graph of efficiency for 240 and 720 nodes.
(Black is low.)

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k"4, L"1, 2, 50, Κ " 150!

k"4, L"1,2,50, Κ " 200!

k"4, L"1,2,50, Κ " 110!
gain

Μ
, 0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k"6, L"1, 2, 50, Κ " 150!

k"6, L"1,2,50, Κ " 200!

k"6, L"1,2,50, Κ " 110!
gain

Μ

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k"8, L"1, 2, 50, Κ " 150!

k"8, L"1,2,50, Κ " 200!

k"8, L"1,2,50, Κ " 110!

gain

Μ
, 0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

k"10, L"1, 2, 50, Κ " 150!

k"10, L"1,2,50, Κ " 200!

k"10, L"1,2,50, Κ " 110!

gain

Μ

Fig. 9: Overall capacity gain using shingled writing.

2252 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

to shingled write disks with higher density, the transfer time
becomes shorter. Graefe concluded in 2007 that B-tree nodes
of 256 KB are nearly optimal. We repeated his calculations
and they show that the optimal size for shingled write disks
is 256 KB, 512 KB, or 1 MB depending on our assumption
on rotational latency (6000, 8000, and 10000 rotations/minute)
and average track length (2 MB to 2.5 MB), Table I. A block
size of 256 KB still remains close to optimal.

If we use Gray’s and Graefe’s assumption [19], [20] on the
fan-out of B+ trees, then we have 35 – 45 tracks worth of data
per stretch of LAZ. The actual space needed is higher, as the
log contains stale nodes. To regain space, a cleaning operation
reads nodes from the head of the log and writes active nodes
to the tail of the log. Reads and writes are of consecutive
blocks and therefore very efficient compared to accessing
random blocks. On average, a cleaning operation needs to
recover as much or more space as is lost to updating. A large
operation can write nodes in order and place consecutive nodes
in adjoining blocks.

Storing nodes in logical order allows a logical read of nodes
in a single read operation and enables read-ahead of blocks.
While a log-structured table optimizes write operations, a
series of updates will destroy the order in which active nodes
are stored. To measure the efficiency of range queries, we
introduce the notion of scan efficiency.

We count the number of times that the next node in logical
order is physically located next to it in the track (Efficiency
1) and the number of times that the two following nodes in
logical order are the two next nodes in the track (Efficiency 2).
We simulated the behavior of the log with 240 and 720 nodes.
We used two different types of operations, (log) cleaning, and
(log) ordering. The first operation reads from the beginning of
the log consecutively until it has encountered a certain value
(the cleaning amount) of current nodes, which it then orders
and writes at the end of the log. The second operation operates
on a range of node numbers that walks through the set of nodes
and when it reaches their end starts over at the beginning. All
nodes are ordered according to their logical value and written
to the end of the log. We introduced this operation because
we observed that we needed to clean a large amount of nodes
in order to obtain good read efficiency for scans (Fig. 6).

We simulated updating 40 nodes before starting an ordering
and a cleaning operation with various amounts of nodes
ordered or cleaned. Our results show that cleaning operations
need to be moderately large to limit the storage overhead of
the log (Fig. 6, 7). Ordering operations can have detrimental
effects on the efficiency of scans and have at best the same
effect as increasing the amount of nodes cleaned, thus they are
a bad idea that should be abandoned in favor of increasing the
cleaning amount (Fig. 8). The absolute size of the log is not
important for either limiting the storage overhead of the log or
for obtaining good read behaviour for scans. We calculate the
storage overhead of our scheme. We assume an organization
of L RAZ tracks with corresponding LAZ. If the node fan-out
of the B+-tree is µ , the LAZ contains a log with data filling
µL tracks. Depending on the frequency of cleaning, the actual

size of the log is larger by a factor of κ. Additionally, we have
one guard band per RAZ and LAZ and two additional guard
bands, one which separates the beginning and end of the log
and one at the end of the assembly, each consisting of k tracks.
This gives us a total storage need of L+ µκL+(L+ 2)k for
storing L+µL worth of data. If we assume a storage capacity
increase of 2.4 due to the introduction of shingled writing, we
obtain the capacity gain g for B+-trees as

2.4(L+1)µ
(1+µκ)L+(L+2)k

We display the capacity gains in Fig. 9. We can see that L has
little influence, the size of the guard band has some, but the
greatest influence is that of efficient log cleaning resulting in
smaller logs.

Taking our data together, it seems best to organize the B+-
table in ensembles consisting of one track of RAZ for lowest
level index nodes and associated LAZ storing the node leafs
in a LAZ. Higher levels of the index nodes should be stored in
RAZ, but not necessarily next to a LAZ. The speed and extent
of log cleaning offers a trade-off between better use of capacity
and faster execution of range queries and scans on one hand
and more frequent and involved cleaning operations on the
other hand. The frequency and clustering of write operations
will determine whether aggressive cleaning is possible.

C. Node Structure

We assume a standard B+-tree structure, where the records
are maintained in the leaf nodes. We also assume standard
optimization techniques such as suffix and prefix compression
to increase the number of entries in an index node. Many
current variants of B+ trees (such as Blink-trees [32] or Π-
trees [37]) use sibling links between nodes of the same level.
These links enable fast traversal of the table, but are also useful
for key range locking [53]. Key range locking needs to find
the next key, which might be in a neighboring node that needs
to be accessed, a process known as “crawling”.

If we try to maintain sibling links in an index or leaf node
located in LAZ, then an update will ripple through all leaf
nodes and index nodes, as moving one nodes forces link
updates, which in turn force the nodes containing the links to
be updated. We follow Graefe’s lead [17] in using fence keys,
that define the range of keys that can be inserted into the node
in the future. A fence slightly increases the information that a
node contains, but also eliminates the need for crawling at the
lower levels of the tree. Fences also make prefix compression
easier. On the downside, the lack of forward links creates the
necessity to cache the next higher index node in order to find
the next node, for example during a scan.

D. Page Updates

An update proceeds as usual by travelling from the root to
the index node where the record should be inserted or which
contains the pointer to the leaf node that needs to change. In
Fig. 10 top, we show a three level B+-tree with the upper two
levels in RAZ. An update to a leaf node acquires a latch (a

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2253

© 2014 ACADEMY PUBLISHER

Fig. 10: Example of a split operation in the B+-tree.

short-term low-cost lock whose holder guarantees the absence
of deadlock) on the page and its parent index node. An update
reads the page and writes the new page at the end of the log
in LAZ. If there should be a crash at this moment, the update
would be lost but for the write-ahead log. In our example
(Fig. 10), we assume that the new page has to split and that we
generate two different new pages. The next step is to change
the parent index node in-place to point to the new page(s)
(Second panel, Fig. 10). The index node itself might overflow
because of the insertion of the additional entry. If this is the
case, then the transaction creates an additional index node and
sets the links in the second index node to point to the successor
and the link in the old index node to point to the new one
(Fig. 10, third panel). At this point, the transaction can free
the latches and the tree is in a consistent state as all index
nodes are reachable through the parent node.

Next, the transaction causes an update operation for the par-
ent node to be scheduled. This update operation is independent
of the transaction, that caused the change to the leaf node. The
operation inserts the new link into the parent. If this leads to
a split, then we proceed just as before with the lowest level

index nodes (Fig. 10, bottom). This scheme based on the Π-
trees of Lomet and Salzberg only updates small parts of the
B+-trees. In place of trying left- and right-rotation in order to
avoid splits of index nodes, we can follow Lomet’s example
once more and run node consolidation procedures.

Assume now that the lowest layer of index nodes is stored
in LAZ. In this case the index node referring to the leaf page
cannot be updated in place. We therefore have to latch the
parent in RAZ, the index node, and the leaf node. If we have
to split the index node, then we write the two new index nodes
in LAZ together with the two new leaf nodes. If we also need
to split the parent, then we proceed with the parent as before,
i.e. we use the sibling pointer in the parent to postpone a
potential split of the parent’s parent. The complexity of this
operation is an additional argument against storing the index
in LAZ.

Just like in a Π-tree, any operation involves at most one
RAZ level in the B+ tree. The operations are atomic and can
succeed or fail independently of success or failure of another
atomic transaction. Thus, only these actions need to be made
recoverabe. Limiting the size of atomic transformations of the
tree should result in improving concurrency.

E. Node Consolidation

Node consolidation is an option that tries to save space
avoiding index nodes with low load by moving its entries to
a left or a right neighbour and delete the under-utilized node.
This can be done also at the level of leaf nodes. Necessary
conditions for consolidation are that the neighbour shares
the same parent node and that the neighbour can absorb the
combined load. To maintain the atomicity of consolidation,
the process needs to latch the node, its neighbour, and its
parent. The latches are released only after the restructuring
succeeds. Any operation that changes a node can discover an
underutilized node and schedule a node consolidation.

F. Enabling Snapshot and Higher Read Concurrency

The ability to take a snapshot of a running system is impor-
tant for debugging systems. For databases, it offers additional
concurrency opportunities for transactions doing only reads.
To take a snapshot, we make a virtual copy of the upper
hierarchy of the B+-tree that is stored in RAZ. All the index
nodes in LAZ and all the leaf nodes, i.e. all nodes to which the
index nodes in RAZ can point, are protected from overwrites
because of the append-only nature of the log. Changes to
the upper index nodes are relatively rare events. However, if
a transaction needs to modify an upper index, for example
because it is the parent of a leaf node that needs to split, we can
maintain the snapshot by making a copy of that upper index
node. We recall that in our scheme, splits that perculate above
one level in RAZ are performed as an independent transaction
and scheduled lazily. These tree maintenance operations can
be scheduled to run after the snapshot is no longer needed, or
they can run concurrently by safeguarding the node.

The same append-only log structure allows also additional
types of transaction control for writes, as only the update to

2254 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

nodes in RAZ (or to their copies in the page pool) changes the
state of the B+-tree. The investigation of these opportunities
has to be left for future work.

VI. LINEAR HASHING FOR SHINGLED WRITE DISK

Linear Hashing (LH) [35] is an extensible hashing scheme
that offers single step access to a record given its key. LH
calculates the page (the bucket in LH language) where the
record resides using a variable hash function and a file state.
In more detail, LH places all records in buckets numbered
from 0 to N−1 with N being the number of buckets. The file
state determines and is determined by N. It is written as (l,s)
where N = 2l + s and l = log2(N) is the highest power of two
fitting into N. LH uses a family of hash functions defined by
hi(c) = c (mod 2i). Given a record with key c, the bucket a(c)
where the record resides is given by

a(c) =
{

hl(c) if s≤ hl+1c < 2l

hl+1(c) else

Bucket k with s ≤ k < 2l have bucket level l, the remaining
bucket level l + 1. An LH-file adjusts to changes in the size
of the file by splitting and merging buckets if the load factor
(number of records divided by N) reaches thresholds. A split
is always of the bucket s and a merger always merges buckets
N−1 and s−1.

If an LH-file is stored in RAM, then the buckets tend to
be small and the focus of implementation is on allowing
concurrent addresses, as was done by the still up-to-date work
of Ellis [11]. To store an LH file on disk, one should use
a two layer implementation. A first layer of LH determines
the disk block, a second layer of LH organizes the records
in the disk block. For the lower layer, we use c >> l in the
first-level buckets with bucket level l and c >> (l + 1) for
those with bucket level l + 1, i.e. the key shifted by the file
level as the key. A record access loads the bucket from disk
into RAM (if it is not already in cached in RAM) and then
uses the second level of LH to identify the record quickly in
RAM. If we use Ellis’ implementation, the first-level bucket
contains the relative addresses of the buckets and each bucket
is implemented as a short linear list [11]. As usual, access
times is dominated by the time to fetch from disk. On a current
disk, a first-level bucket is stored in a single block and updated
in place. (It is possible that blocks overflow and we need to
store parts of the block in an overflow bucket.)

An easy adaptation to shingled write disk is to store the LH-
file completely in RAZ. At the risk of additional disk fetches
or using more space in RAM for disk caching, we can pack the
data in an LH-file more densely in LAZ. For this we need to
introduce a block translation layer stored in RAM. As outlined
before, we use a two-level implementation where the first level
determines the disk bucket and the second level determines the
location of the record within the disk bucket. When we update,
merge, or split a block, we fetch the blocks involved, create
the updated blocks and write them in a LAZ. We also maintain
the addresses of the blocks in a RAM-dictionary. Thus, after
calculating the bucket number, we consult the dictionary to

find where the disk block is stored. We then fetch the block
and use the lower level LH organization to access the record.

This implementation offers a trade-off between RAM usage
and memory bandwidth usage. If we use various buckets to
store the same first-level bucket, then the size of the dictionary
is smaller, but we need to transfer larger units between disk
and memory. Tuning the bucket size depends on local load and
architecture, but can be approximated by comparing the costs
of adding bandwidth and RAM. If the database shuts down
orderly, we write the dictionary in a RAZ. In order to avoid
writing the dictionary to RAZ after each bucket update, we
maintain a table sequence number that is augmented with every
action that changes the contents on disk. We then store the
sequence data and bucket number and level at the beginning
of each first-order bucket. As long as we know in which LAZ
the LH-file is stored, we can then reconstruct the translation
dictionary and the file state of the first level LH-structure by
scanning the LAZ.

Our second design gives the same access time for shingled
write disks as for current disks at the cost of maintaining a
translation table in memory. If the table is only rarely accessed
so that it should not be kept in memory, then our design adds
one disk access to the dictionary on RAZ for each read and
two disk accesses for each write (since we now have to update
the dictionary in RAZ).

VII. CONCLUSIONS

While shingled write disks are only about to appear on
the market (2013), their introduction will be disruptive for
database table implementations. Just as other storage tech-
nologies introduced in the past, they require an adaptation of
data structures if a new technology is going to be used at its
fullest potential. We have shown how to adapt two of the most
important data structures used to implement database tables —
B+-trees and linear hash files — without adding significantly
to access times. To do so, we gave up some of the additional
storage space gained by shingled writing. An evaluation of our
proposed data structures through simulation needs to be post-
poned for future work. The use of a combination of NVRAM
(such as flash or SCM) alleviates the design challenges, but
needs to be investigated. Finally, the log structure imposed
by shingled writing can be used for version based transaction
control.

REFERENCES

[1] M. Aboutabl, A. Agrawala, and J.-D. Decotignie, “Temporally de-
terminate disk access (extended abstract): an experimental approach,”
in Proceedings of the 1998 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, ser.
SIGMETRICS ’98/PERFORMANCE ’98, 1998, pp. 280–281.

[2] A. Amer, J. Holliday, D. Long, E. Miller, J. Paris, and T. Schwarz, “Data
management and layout for shingled magnetic recording,” Magnetics,
IEEE Transactions on, vol. 47, no. 10, pp. 3691–3697, 2011.

[3] A. Amer, D. Long, E. Miller, J. Paris, and T. Schwarz, “Design issues for
a shingled write disk system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–12.

[4] A. Arpaci-Dusseau, R. Arpaci-Dusseau, L. Bairavasundaram, T. Denehy,
F. Popovici, V. Prabhakaran, and M. Sivathanu, “Semantically-smart disk
systems: past, present, and future,” ACM SIGMETRICS Performance
Evaluation Review, vol. 33, no. 4, pp. 29–35, 2006.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2255

© 2014 ACADEMY PUBLISHER

[5] Y. Cassuto, M. Sanvido, C. Guyot, D. Hall, and Z. Bandic, “Indirection
systems for shingled-recording disk drives,” in Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE, 2010,
pp. 1–14.

[6] W. A. Challenger, C. Peng, A. Itagi, D. Karns, Y. Peng, X. Yang,
X. Zhu, N. Gokemeijer, Y. Hsia, G. Yu, R. E. Rottmayer, M. Seigler, and
E. C. Gage, “The road to HAMR,” in Asia-Pacific Magnetic Recording
Conference (APMCR ’09), 2009.

[7] K. S. Chan, J. Miles, E. Hwang, B. V. K. Vijayakumar, J. G. Zhu,
W. C. Lin, and R. Negi, “TDMR platform simulations and experiments,”
accepted by IEEE Transactions on Magnetics, 2009.

[8] K. Chan, R. Radhakrishnan, K. Eason, M. Elidrissi, J. Miles, B. Vasic,
and A. Krishnan, “Channel models and detectors for two-dimensional
magnetic recording,” Magnetics, IEEE Transactions on, vol. 46, no. 3,
pp. 804–811, 2010.

[9] D. Comer, “Ubiquitous B-tree,” ACM Comput. Surv., vol. 11, no. 2, pp.
121–137, Jun. 1979.

[10] H. Dai, M. Neufeld, and R. Han, “ELF: An efficient log-structured flash
file system for micro sensor nodes,” in ACM Conference on Embedded
Networked Sensor Systems, 2004.

[11] C. Ellis, “Concurrency in linear hashing,” ACM Transactions on
Database Systems (TODS), vol. 12, no. 2, pp. 195–217, 1987.

[12] R. Finlayson and D. Cheriton, “Log files: an extended file service
exploiting write-once storage,” in SOSP ’87: Proceedings of the eleventh
ACM Symposium on Operating systems principles, 1987, pp. 139–148.

[13] J. Gait, “The optical file cabinet,” Computer, vol. 39, no. 1, pp. 2 – 9,
June 1988.

[14] E. Gal and S. Toledo, “Algorithms and data structures for flash mem-
ories,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp. 138–163,
2005.

[15] S. Garfinkel, “A file system for write-once media,” MIT Media Lab,
Tech. Rep., October 1986.

[16] G. Gibson and G. Ganger, “Principles of operation for shingled disk
devices,” Tech. Rep. CMUPDL-11-107, Carnegie Mellon University,
Tech. Rep., 2011.

[17] G. Graefe, “Write-optimized B-trees,” in Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. VLDB
Endowment, 2004, pp. 672–683.

[18] ——, “The five-minute rule twenty years later, and how flash memory
changes the rules,” in Proceedings of the 3rd international workshop on
Data management on new hardware. ACM, 2007, p. 6.

[19] J. Gray and G. Graefe, “The five-minute rule ten years later, and other
computer storage rules of thumb,” ACM Sigmod Record, vol. 26, no. 4,
pp. 63–68, 1997.

[20] J. Gray and F. Putzolu, “The 5 minute rule for trading memory for disc
accesses and the 10 byte rule for trading memory for cpu time,” in ACM
SIGMOD Record, vol. 16, no. 3, 1987, pp. 395–398.

[21] S. Greaves, Y. Kanai, and H. Muraoka, “Shingled recording for 2–3
Tbit/in2,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3823–
3829, October 2009.

[22] W. Josephson, L. Bongo, K. Li, and D. Flynn, “DFS: A file system for
virtualized flash storage,” ACM Transactions on Storage (TOS), vol. 6,
no. 3, p. 14, 2010.

[23] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “µ-tree: an ordered index
structure for NAND flash memory,” in EMSOFT ’07: Proceedings of
the 7th ACM & IEEE international conference on Embedded software,
2007, pp. 144–153.

[24] P. Kasiraj, R. New, J. de Souza, and M. Williams, “System and method
for writing data to dedicated bands of a hard disk drive,” United States
Patent 7490212.

[25] J. Kohl, C. Staelin, and M. Stonebraker, “Highlight: Using a log-
structured file system for tertiary storage management,” in Usenix
Conference, 1993.

[26] A. R. Krishnan, R. Radhakrishnan, and B. Vasic, “LDPC decoding
strategies for two-dimensional magnetic recording,” in IEEE Global
Communications Conference, 2009.

[27] A. R. Krishnan, R. Radhakrishnan, B. Vasic, A. Kavcik, W. Ryan, and
F. Erden, “Two-dimensional magnetic recording: Read channel modeling
and detection,” in IEEE International Magnetics Conference, May 2009.

[28] M. H. Kryder and C. S. Kim, “After hard drives – what comes next?”
IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3406–3413,
October 2009.

[29] M. Kryder, “After hard drives – what comes next?” in Proceedings of
the IEEE International Magnetics Conference, 2009.

[30] M. Kryder, E. Gage, T. McDaniel, W. Challener, R. Rottmayer, G. Ju, Y.-
T. Hsia, and M. Erden, “Heat assisted magnetic recording,” Proceedings
of the IEEE, vol. 96, no. 11, pp. 1810–1835, Nov. 2008.

[31] S.-W. Lee and B. Moon, “Design of flash-based DBMS: an in-page
logging approach,” in SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, 2007, pp.
55–66.

[32] P. Lehman et al., “Efficient locking for concurrent operations on b-
trees,” ACM Transactions on Database Systems (TODS), vol. 6, no. 4,
pp. 650–670, 1981.

[33] Y. Li, B. He, Q. Luo, and K. Yi, “Tree indexing on flash disks,” in ICDE
’09: Proceedings of the 2009 IEEE International Conference on Data
Engineering, 2009, pp. 1303–1306.

[34] S. Lim and K. Park, “An efficient NAND flash file system for flash
memory storage,” Computers, IEEE Transactions on, vol. 55, no. 7, pp.
906–912, 2006.

[35] W. Litwin, “Linear hashing: A new tool for file and table addressing,”
in Sixth International Conference on Very Large Data Bases, October.
IEEE Computer Society, 1980, pp. 212–223.

[36] D. Lomet and B. Salzberg, “Access methods for multiversion data,” ACM
SIGMOD Record, vol. 18, no. 2, pp. 315–324, 1989.

[37] ——, “Concurrency and recovery for index trees,” The VLDB Journal,
vol. 6, no. 3, pp. 224–240, Aug. 1997.

[38] K. Matsumoto, A. Inomata, and S. Hasegawa, “Thermally assisted
magnetic recording,” Fujitsu Scientific and Technical Journal, vol. 42,
no. 1, pp. 158 – 167, January 2006.

[39] S. Nath and A. Kansal, “FlashDB: dynamic self-tuning database for nand
flash,” in IPSN ’07: Proceedings of the 6th international conference on
Information processing in sensor networks, 2007, pp. 410–419.

[40] K. Norvag and K. Bratbergsengen, “Write optimized object-oriented
database systems,” in Computer Science Society, 1997. Proceedings.,
XVII International Conference of the Chilean. IEEE, 1997, pp. 164–
173.

[41] S. Quinlan, “A cached WORM file system,” Software – Practice and
Experience, vol. 21, no. 12, December 1991.

[42] P. Rathmann, “Dynamic data structures on optical disks,” in Proceedings
of the First International Conference on Data Engineering, 1984, pp.
175–180.

[43] H. Richter, A. Dobin, O. Heinonen, K. Gao, R. Veerdonk, R. Lynch,
J. Xue, D. Weller, P. Asselin, M. Erden, and R. Brockie, “Recording
on bit-patterned media at densities of 1 tb/in and beyond,” IEEE
Transactions on Magnetics, vol. 42, no. 10, pp. 2255–2260, Oct. 2006.

[44] M. Rosenblum, “The design and implementation of a log-structured file
system,” Ph.D. dissertation, UC Berkeley, 1992.

[45] M. Rosenblum and J. Ousterhout, “The design and implementation of
a log-structured file system,” Operating Systems Review, vol. 25, no. 5,
pp. 1–15, October 1991.

[46] R. E. Rottmeyer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld,
Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfiled, K. Pelhos,
P. Chubing, T. Rausch, M. A. Seigler, D. Weller, and Y. Xiaomin, “Heat-
assisted magnetic recording,” IEEE Transactions on Magnetics, vol. 42,
no. 10, pp. 2417 – 2421, October 2006.

[47] J. Schindler and G. R. Ganger, “Automated disk drive characterization
(poster session),” SIGMETRICS Perform. Eval. Rev., vol. 28, no. 1, pp.
112–113, Jun. 2000.

[48] R. Sears, C. van Ingen, and J. Gray, “To blob or not to blob: Large object
storage in a database or a filesystem?” Microsoft Research Technical
Report MSR-TR-2006-45, 2006.

[49] M. Selzer, K. Bostic, M. McKusick, and C. Staelin, “An implementation
of a log-structured file system for UNIX,” in Winter Usenix Conference,
1993.

[50] Y. Shiroishi, K. Fukuda, I. Tagawa, S. Takenoiri, H. Tanaka, and
N. Yoshikawa, “Future options for HDD storage,” IEEE Transactions
on Magnetics, vol. 45, no. 10, October 2009.

[51] I. Tagawa and M. Williams, “High density data-storage using shingle-
write,” in Proceedings of the IEEE International Magnetics Conference,
2009.

[52] J. S. Vitter, “An efficient I/O interface for optical disks,” ACM Trans.
Database Syst., vol. 10, no. 2, pp. 129–162, 1985.

[53] G. Weikum and G. Vossen, Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Morgan Kaufmann Pub, 2002.

[54] D. Woodhouse, “JFFS: The journalling flash file system,” in Ottawa
Linux Symposium, vol. 2001, 2001.

2256 JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

[55] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes, “On-
line extraction of scsi disk drive parameters,” in Proceedings of the
1995 ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, ser. SIGMETRICS ’95/PERFOR-
MANCE ’95, 1995, pp. 146–156.

[56] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An efficient B-tree layer
implementation for flash-memory storage systems,” ACM Trans. Embed.
Comput. Syst., vol. 6, no. 3, p. 19, 2007.

[57] Y. Wu, J. O’Sullivan, N. Singla, and R. Indeck, “Iterative detection
and decoding for separable two-dimensional intersymbol interference,”
Magnetics, IEEE Transactions on, vol. 39, no. 4, pp. 2115–2120, July
2003.

[58] X. Zhang, D. Du, J. Hughes, and R. Kavuri, “HPTFS: A high perfor-
mance tape file system,” in 26th IEEE Symposium on Massive Storage
Systems and Technology, 2006.

[59] J.-G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic record-
ing,” IEEE Transactions on Magnetics, vol. 44, no. 1, pp. 125–131, Jan.
2008.

JOURNAL OF COMPUTERS, VOL. 9, NO. 10, OCTOBER 2014 2257

© 2014 ACADEMY PUBLISHER

