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ABSTRACT 
LH*RS is a new high-availability Scalable Distributed Data 
Structure (SDDS). The data storage scheme and the search 
performance of LH*RS are basically these of LH*. LH*RS manages 
in addition the parity information to tolerate the unavailability of 
k ≥ 1 server sites. The value of k scales with the file, to prevent 
the reliability decline. The parity calculus uses the Reed-Solomon 
Codes. The storage and access performance overheads to provide 
the high-availability are about the smallest possible. The scheme 
should prove attractive to data-intensive applications.  
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1 INTRODUCTION 
Multicomputers (collections of computers connected by a high-
speed network) are claimed to be the industry choice for the next 
millennium [M97], [P98]. They combine affordability and high 
performance, but also demand new data structures and algorithms, 
[CACM97].  Specifically, the need for scalability led to the 
proposal of Scalable Distributed Data Structures (SDDS) 
[LNS96].  SDDSs allow for files whose records reside in buckets 
at different server sites. The files support key-based searches and 
parallel/distributed scans with function (query) shipping.  They 
can be hash-partitioned, or ordered with respect to the primary 
key or support multikey access. Among the SDDS studied 
[SDDS], probably the best known is the distributed version of 
Linear Hashing [L80], called LH*, [LNS96], [KLR96], [B99a], 
[K98], [R98], [SDDS].   

An SDDS file is manipulated by the SDDS client sites. Each 
client has its own addressing schema called image that it uses to 
access the correct server where the record should be. As the 
existing buckets fill up, the SDDS splits them into new buckets. 
The clients are not made aware synchronously of the splits. A 
client may have an outdated image and address an incorrect 
server. An SDDS server has the built-in capability to forward 
incorrect queries. The correct server sends finally the Image 
Adjustment Message (IAM) to the client. The information in an 
IAM avoids at least repeating the same error twice. It does not

necessarily make the image totally accurate.  

These principles avoid the centralized address calculus that could 
become a hot spot. They allow SDDS files to scale to thousands 
sites. The scaling makes however a bucket unavailability (failure) 
increasingly likely. A high availability scheme retains the 
accessibility of all records to the application despite failures. A k-
availability scheme preserves the availability of all records despite 
up to k bucket failures.  A 0-availability scheme does not tolerate 
any unavailability. The LH* and the traditional data structures are 
0-available by this measure.   

Higher values of k enhance the reliability of the file, i.e., the 
probability that all stored data are available to the application, 
[LMR98].  Modern databases run the 24/7 regime under web 
access and exemplify the need for high availability schemes as 
well as the cost of data unavailability.  The well-known crash of 
eBay in June 1999 resulted in the loss of $4B of market value and 
of $25M in operations [B99].  The failure of a typical financial 
database costs $10K-$27K per minute. 

The first 1-available SDDS scheme was a variant of LH* called 
LH*M, using record mirroring [LN96]. The scalable and 
distributed generalizations of B+-trees, [BV98] and [VBW98], 
also use the replication.  In both cases, the doubling of the storage 
cost may be prohibitive. High-availability variants of LH* with 
lower storage overhead have therefore been developed.  The 1-
availability scheme LH*S stripes every data record into m stripes, 
then places each stripe into a different bucket and stores the 
bitwise parity of the stripes in parity records in additional parity 
buckets, [L&al97].  The storage overhead for the high-availability 
is only about 1/m for m stripes per record.  

Striping produces typically meaningless record fragments, and 
usually impairs the parallel scans requiring entire records at each 
site. Efficient scans are decisive for many applications of web 
servers or  parallel databases, [R98].  Another 1-availability 
variant of LH* termed LH*g addressed this concern [LR97], 
[L97], [LMRS99]. The application records, called data records, 
remain entire in LH*g. For the high-availability, they form m-
member record groups provided each with the bitwise parity 
record.  The storage overhead is about 1/m, as for the striping. The 
speed of searches and of parallel scans without failures is that of 
generic (0-available) LH*.  It is unaffected by the additional 
structure for the high-availability.  

The 1-availability or even k-availability for any static k cannot 
prevent the reliability decrease in a scaling file.  The scalable 
availability scheme LH*SA was therefore designed to dynamically 
increase k, [LMR98]. It uses an elaborated record grouping, where 
each data record c is a member of k or k+1 groups that intersect 
only in c and are 1-available. For each k, the LH*SA file is k-
available.  The storage overhead may vary substantially while the 
file scales. It can be close to k/m, the known minimum for k-
availability, [H&al94]. But, it can also reach over 50 %.  
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Below, we present an alternative scalable availability scheme 
termed LH*RS. Through record grouping, it retains the LH* 
generic efficiency of searches and scans. The k-availability results 
from k or k+1 (generalized) parity records per record group. The 
parity calculus uses the Reed Solomon (RS) Codes. This 
mathematically complex tool proves simple and efficient in 
practice. The advantages of LH*RS are “smoother” storage 
overhead, always close to the minimal possible, and faster 
recovery algorithm. The capabilities of LH*RS make the scheme 
attractive. The other high-availability LH* scheme retain 
nevertheless some advantages.  The diversity should prove 
attractive to implementers. 

Section 2 introduces the LH*RS scheme, focusing on its use of RS 
calculus. Section 3 presents the actual parity computations in an 
LH*RS file. We explain the file manipulation in Section 4.  
Section 5 discusses file performance and Section 6 addresses 
variants to the scheme. Section 7 presents related work, and 
Section 8 concludes the article. The Appendix provides some 
mathematical background of RS-codes and pseudo-code for some 
algorithms. 

2 HIGH-AVAILABILITY OF LH*RS 
SCHEMA 

2.1 Record Grouping 
We assume the basic familiarity with LH*.  A LH*RS file consists 
of an LH*-file called data file with the data records generated by 
the application in data buckets 0,1,…,M-1. The LH* data file is 
augmented for the high-availability with parity buckets to store 
the parity records at separate servers.  A data record is identified 
by its key c and has also some non-key part. As for the generic 
LH*, the correct bucket a for data record c in an LH*RS file is 
given by the linear hashing function hj,n ; a = hj,n (c). The 
parameters (j,n)  called file state evolve dynamically. The client 
image consists also from h, but perhaps with outdated state.  
Details of the address computations are not important here.  
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Figure 1. LH*RS file: (a) 2-available bucket group,  (b) Data 
and parity records. 

We group successively created data buckets in bucket groups. All 
but perhaps the last bucket group have the same size m = 2f for 
some f >1.  Bucket a belongs to the group numbered g = a div m, 
where div denotes integer division. The last bucket group can 
contain less than m buckets. For the parity calculus, we formally 
complement it with dummy (not really existing) buckets with 
dummy (zero) records. Every bucket group is provided with k≥1 
parity buckets where the parity records for the group are stored. 
Figure 1a shows a bucket group with four data buckets and their 
data records (•) and two parity buckets and their parity records 
(x). Each data record has a rank  1,2… that reflects the position of 

the record in its data bucket.  A record group contains all the data 
records with the same rank r in the same bucket group. The record 
group with r = 3 is enclosed for example in Figure 1a. The k 
parity buckets contain parity records for each record group. A 
parity record consists first of the rank r of the record group, then 
of the primary keys c1, c2, … cl of all the (non-dummy) data 
records in the record group, and finally of the (generalized) parity 
data calculated from the data records and the number of the parity 
bucket.  The parity data, denoted by B in Figure 1b, differ among 
the parity records.  We call the ensemble of the data records in a 
record group and its parity records a record segment and likewise, 
the bucket group with its parity buckets a bucket segment.  

2.2 Scalable Availability 
Figure 2 illustrates the expansion of an LH*RS file. Parity buckets 
are represented shaded and above the data file, right to the last, 
actual or dummy, bucket of the group they serve. For the sake of 
the example, we choose m = 4. Dummy buckets are delimited 
with dotted lines. The file is created with data bucket 0 and one 
parity bucket, Figure 2a. The first insert creates the first parity 
record, calculated from the data record and from m-1 dummy 
records.  The data record and the parity record receive rank 1.  
The file is 1-available. 

When new records are inserted into data bucket 0, new parity 
records are generated.  Each new data and parity record gets the 
next rank.  When data bucket 0 reaches its capacity of b records, 
b >> 1, it splits. Usually half of its records move into data bucket 
1.  During the split, both the remaining and the relocated records 
receive new consecutive ranks starting with r = 1.  Since there are 
now (non-dummy) records with the same rank in both buckets, the 
parity records are recalculated, Figure 2b.    
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Figure 2. Scalable availability of LH*RS file. (a) initial file, (b) 
first split, (c) max. 1-available file,  (d) beginning 2-availability 
and (e) 3-availability. 

The continuing growth of the file through inserts formally 
replaces the dummy records in the data buckets with actual 
records. The splits append new data buckets 2,3… Eventually, a 
split creates data bucket m+1.  This starts the second bucket group 
and its first parity bucket. 

While the file continues to scale, the probability of double failure 
increases. To offset the decline in reliability, the file availability 
increases gracefully to two parity buckets per group. This process 
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starts, Figure 2c and Figure 2d,  when the file reaches some size 

M = 2i1.  Next bucket split is then bucket 0. We recall that  LH* 
scheme splits the buckets in the deterministic order 0,0,1…2i –
 1,0… On the one hand, each new bucket group is from now on 
formed with two parity buckets. On the other hand, a second 
parity bucket is appended to each existing bucket group during the 

split of its 1st member. When M reaches M = 2i1+1, i.e., when the 
file has doubled in size, all groups have two parity buckets. At this 
point, the file is 2-available and can survive failure of any two 
buckets. 

Further scaling makes a triple failure increasingly likely. To offset 
the reliability decline, one has to further increase the availability 

level. This starts again when the file reaches some size M = 2i2; i2 
> i1 so that next bucket to split is again bucket 0, Figure 2e. Each 
split, starting from that of bucket 0 again, creates then three parity 
buckets for the newly appended data bucket, and adds a third 
parity bucket to the two already present for the splitting data 

bucket. Once data bucket M = 2i2  splits in this way, all bucket 
groups are 3-available, and the file has reached 3-availability.  
This process can continue towards 4-availability, etc., making 
LH*RS a scalable availability schema.  

The values of i1, i2 etc. which determine when the availability 
level starts to increase, are controlled by the LH*RS-coordinator.  
Essentially, the LH*RS coordinator is the LH* coordinator 
provided with additional capabilities for the high-availability.  We 
recall that the LH* coordinator handles the file state parameters 
which it uses to calculate next bucket to split when some, usually 
another, bucket reports an insert creating an overload.  In addition, 
the LH*RS coordinator initiates the creation of parity buckets for 
new groups and the scaling up of the availability. It also manages 
the record and bucket recovery.    

The scheme allows for a variety of strategies in the management 
of availability.  The basic strategy starts increasing the k-
availability towards (k + 1)-availability whenever the files reaches 
mk buckets.  In the notation from above, this variant chooses 

2i1 = m,   2i2 = m2 etc.  We call this strategy, as any other using 
predefined values of i, uncontrolled reliability.  We implement the 
reliability control strategy by dynamically choosing i based on the 
file reliability as monitored by the coordinator. Whenever bucket 
0 is next in line for a split, the scheme decides whether the 
reliability level would drop under some threshold Pmin before 
bucket 0 is again about to be split, and starts to create (k + 1) 
parity buckets if necessary.  The basic Pmin is the reliability of a 
single bucket.  Section 5.4  discusses the reliability control more 
in depth. 

2.3 Parity Coding 
LH*RS parity calculus uses the linear RS codes.  These are 
originally error correcting codes, among most efficient, since they 
are maximal distance separating (MDS) codes. We use them as 
erasure correcting codes recovering unknown data values. We 
first recall the theory of Galois Fields, at the basis of the RS 
codes.  We use terms from [MS97]. 

2.3.1 Galois Fields 
A Galois Field GF(N) is a set with N elements and the arithmetic 
operations of addition, subtraction, multiplication, and division.  
There are two distinguished elements, a zero element, written 0, 
and a one element, written 1.  The operations over GF(N) possess 

the usual properties of their analogues in the real numbers 
including the properties of 0 and 1. 

For LH*RS, we only use GF(2f) for some f > 0.  We represents the 
elements of the field as f-bit strings. The byte based structure of 
modern computers suggests f = 4 or f = 8.  Generally, the 
implementation of multiplication consumes more resources for 
larger values for f , whereas a smaller value of f limits too much 
the number of parity records in a record group. 

For every f, the bit representation of zero is 0 = 00…0 and of one 
is 1 = 0…01. For bytes, one thus has 0 = 0000 0000 and 1 = 0000 
0001.  The addition and the subtraction of two elements are the 
same and equal to their Exclusive-Or (XOR).  The definition of 
multiplication and division is more cumbersome.   Mathematically 
most convenient is the definition of the multiplication based on 
representing the elements of GF(2f) as polynomials of degree f 
over the field GF(2) = {0,1}.  The multiplication is then the 
multiplication of polynomials and the product is reduced modulo 
a certain generator polynomial.  These generator polynomials are 
irreducible polynomials of the appropriate degree.  The 
mathematical tables with generator polynomials for interesting 
field sizes are in [MS97]. 

 
String int hex log 
0000 0 0 -∞∞  
0001 1 1 0 
0010 2 2 1 
0011 3 3 4 
0100 4 4 2 
0101 5 5 8 
0110 6 6 5 
0111 7 7 10 
1000 8 8 3 
1001 9 9 14 
1010 10 A 9 
1011 11 B 7 
1100 12 C 6 
1101 13 D 13 
1110 14 E 11 
1111 15 F 12 

Table 1. Log table for the multiplication in GF(16). 

GF multiplication via polynomial multiplication is hardly 
efficient.  Rather, one uses table look-up.  Two methods are 
attractive: (1) a complete multiplication table supplemented by a 
table of multiplicative inverses, and (2) the logarithm and the 
antilogarithm tables. Method (1) is conceptually the easiest.  Its 
drawback is the size of the multiplication table.  For bytes, the 
multiplication table would contain 28⋅28=216 entries or 64KB. In 
addition, the table is two-dimensional and calculating the address 
of an entry introduces additional overhead. 

Method (2) is based on the existence of the primitive elements in 
any GF. The property of each primitive element p is that every 
non-zero field element is a power of p.  We choose p and 
determine for each element g in the GF the power i such that 
pi=g.  We call i the logarithm of g and write i = logp(g).   
Inversely, we call g the anti-logarithm of i and write g = antilogp 
(i).  We tabulate logarithms and antilogarithms in two tables, each 
of the size of the field. We thus have 2f+1 entries in total, many 
times less than method (1) requires for a larger field, e.g. only 512 
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entries for GF(256). We implement multiplication and division of 
Galois field elements using these tables.  For every two elements  
g and h ∈ GF(2f):   

g⋅ h = antilogp ( logp(g) + logp(h) )  
g/h = antilogp ( logp(g) - logp(h) ). 

The  addition or  subtraction is  here modulo 2f – 1 which is the 
number of non-zero elements in GF.   

2.3.2 Example 
Consider GF(16) so f = 4 and there are 15 non-zero elements.  
There are different implementations of this field, one is in Table 
1.  Each field element can be represented as a bit string, an 
integer, and as a hexadecimal digit.  The primitive element is 2, 
the zero element is 0, and the one element is 1.  

Addition remains the XOR operation as given by the ^ operator in 
C, C++, and Java.  As an example of arithmetic, we calculate the 
sum, product, and quotient of the two field elements A = 10 and 
B = 11 in the integer notation.  For the sum, we calculate A+B = 
1010 ^ 1011 = 0001 = 1.  For the product, we take the logarithms 
9 and 7, add them up modulo 15, to obtain 1.  The number with 
logarithm 1 is 2, hence A*B = 2. To calculate A/B, we subtract the 
two logarithms, by taking the remainder modulo 15 we change the 
difference to a number between 0 and 15, and then we take the 
antilogarithm.  Since log(A) – log(B)= -2 ≡ 13, and since 
antilog(13) = D, we have A/B=D. In the faster version of method 
(2), we use the offset –2 into the extended anti-logarithm table. 

2.3.3 Parity Encoding 
We use n for the maximal segment size, m for the record group 
size, and k for the number of parity buckets.  Thus, n = m + k, and 
the group is k-available. 

For the parity calculus, we identify the data record with its non-
key field and the parity record with its parity field B.  Since the 
data record key is replicated in the parity records, it becomes part 
of the parity calculus.  We assume that data records in a record 
group are of the same length.  Otherwise we pad the shorter 
records with 0 bits to obtain the same length.  We treat any record 
as a bit string.  We break each string into symbols of length f.  If f 
does not divide the length of the string, we again pad with 0 bits.  
If we choose f = 4, 8, this padding should not be necessary.  We 
identify the set of all possible symbols with the elements in 
GF(2f). 

We generate each parity record for the record group from the data 
records one symbol at a time.  For the sake of presentation, we 
assume that all parity records are generated at the same time.  
Similarly, we assume that all data records in the record group are 
inserted into the file simultaneously.  We show the actual 
operations in Section 3.  Finally, we assume the coding calculus to 
be centralized, while – as we will see - it is distributed in the 
LH*RS scheme. 

We are thus given m data records, each of which is a string of 
symbols.  We calculate now the first symbol in all the parity 
records simultaneously.  Subsequent symbols are calculated in 
precisely the same manner.  First, we form the vector a = 
(a1,a2,a3,...,am) where ai is the symbol from the ith record in the 
group. We collect the first symbol in all records (data and parity) 
in the vector u = (a1,a2,...,am,am+1,...,an), to which we refer as a 
code word.  The first m coordinates of u are the coordinates of a.  
The remaining k coordinates of u are the newly generated parity 
bucket symbols. 

We obtain u from a by multiplying a from the right with a 
generator matrix G of the linear (systematic) RS-code; namely u 
= a G.  G has m rows and n columns.  G is systematic, that is, G 
consists of two concatenated sub matrices; namely G = I|P. 
Matrix I is a m x m identity matrix, hence a I = a. That is why 
first m coordinates of u form a. Only the columns of the parity 
matrix P operationally contribute to the k parity symbols. Each 
parity symbol within ith parity record is produced by the vector 
multiplication of a by the ith column of P. The entire record 
corresponds to the iteration of this multiplication over all the data 
symbols. 

Matrix G is generated algorithmically through appropriate 
elementary row transformations from m x n matrix V that is a 
Vandermonde matrix (either simple or extended) [MS97]. The 
algorithm is in Appendix A.  Different values of k lead to different 
elements in P, despite same n. In practice, there are only the k 
columns p of P present in the file. Each parity bucket contains 
only one p.  This suffices as the parity symbol is the result of the 
product of u with the column p. 

The maximum number of columns of G is 2f +1, e.g. 257 for byte 
sized symbols.  The number of parity records for a record group is 
limited by this bound, which however appears to be sufficient for 
byte sized symbols.  We know a way to overcome this bound 
dynamically, but this method is beyond our scope here. 

2.3.4 Example 
For the sake of simplicity, we continue with GF(16).  The 
maximal segment size supported by GF(16)   is n = 17.  We set 
the bucket group size to  m = 4.  Our file availability level can 
scale to 13-availability.  There is a way to allow even higher 
availability through dynamic switch to the field GF(256), 
although we will not present it.  We calculate a generator matrix 
G as in Appendix A to be 

1 0 0 0 8 1 7 7 9 3 2 7 7

0 1 0 0 8 7 1 9 7 3 2 7 7

0 0 1 0 1 7 8 3 7 9 7 2 7

0 0 0 1 7 1 8 3 9 7 7 2 7

F C A E

F C A E

F C E A

F C E A

 
 
 =
 
 
 

G

 

The left four columns of G form the identity matrix.  Any four 
different columns of G form an invertible matrix.  The 
multiplication of four-dimensional vector a by G leads to 17-
dimensional vector.  Because of the 4 x 4 identity submatrix of G, 
the first four coordinates of the vector replicate a.  The other 13 
coordinates are symbols for successive parity records. 

Assume the following four data records: “En arche ...”, “Dans le 
...”, “Am Anfang ...”, “In the beginning…”.  The bit strings in GF 
corresponding to the ASCII encoding for our four records are (in 
hexadecimal notation): “45 6E 20 41 72 …”, “41 6D 20 41 6E 
…”, “44 61 6E 73 20 …”, “49 6E 20 70 74…”.  To calculate the 
first symbols in each parity record we form the vector a = 
(4,4,4,4) and multiply it by G.  The product is vector u = 
(4,4,4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,0).   For the second symbol in 
each parity bucket, we form the vector a = (5,1,4,9) and multiply 
by G to obtain code word u = (5,1,4,9,F,8,A,4,B,1,1,2,7,E,9,9,A).  
Notice that the first four coordinates of u always replicate the 
coordinates of a.  We do not have to calculate all coordinates of u 
at once, but can calculate them individually instead.  For example, 
to calculate the fifth coordinate of 2nd u, we multiply vector a with 
the fifth column of G.  Expressing this more conveniently using 
the dot product, we calculate (using GF instead of integer 
operations): 
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a ⋅ (8,F,1,7) = (5,1,4,9) ⋅ (8,1,F,7)  = 5⋅8 + 1⋅F + 4⋅1 + 9⋅7 = 

= E+ F+ 4 + A = F. 
The matrix notation merely combines all 17 dot product 
calculations.  In this manner, we obtain “4F 63 6E E4 …” for the 
first parity record, “48 6E DC EE …” for the second parity record, 
and “4A 66 49 DD …” for the third. 

2.3.5 Record Recovery 
Assume that LH*RS finds at most k data or parity records of a 
record segment to be unavailable. Collect any m available records 
of the segment. Also, concatenate the corresponding columns of 
G into the m x m matrix  H.  By virtue of the Vandermonde 
matrix, any m x m submatrix of G is invertible. Using for example 
Gaussian elimination, we compute H-1.  Collect the symbols with 
the same offset from the m records into a vector b.  By definition,  
a⋅H = b  implying  b⋅H-1 = a.  Hence, multiply b by H-1 to recover 
the missing symbols with the same offset.  Using the same H-1, 
iterate through the entire available records, to produce all missing 
records.   

2.3.6 Example 
Consider that first three data records above became unavailable, 
i.e., only the fourth data record and the first, second and third 
parity records are available.  We form H from the columns 3 to 6: 

0 8 1

0 8 7

0 1 7 8

1 7 1

F

F

F

 
 
 =
 
 
 

H

 

Inversion of H yields: 

1

1

4 2 0
.

4 7 0

2 4 0

B F A

C

D

D

−

 
 
 =
 
 
 

H

 

The first vector b formed from the first symbols of the three 
remaining records is b = (4,4,4,4).  Hence, b⋅⋅H-1 = (4,4,4,4).  The 
next symbols lead to b = (9,F,8,A) and b· H-1= (5,1,4,9) etc. The 
first coordinates of b vectors provide the first missing data record 
“45...”, the second coordinates the second data record “41...”,  the 
third coordinates the third data record “44…”, and the fourth 
coordinates merely reproduce the fourth data record “49...”   

3 ACTUAL PARITY CODING 
The basic operations on a data record are that of insertion, 
deletion, or update.  For the parity calculus, the update is the 
generic operation, the inserts and deletes are seen as special cases. 
An update basically changes only the non-key data, and related 
parity records. An update to the key is dealt with as a deletion 
followed by an insert into usually a new location.  An insert is 
formally an update of a dummy record into the actual one. Vice 
versa, a deletion is an update into the dummy record. 

3.1 Updates  
We consider an update to the ith data record in its group.  Let a be 
the vector with symbols with the same offset of the data records in 
the record group before the update and a’ the vector formed 
similarly after the update. Vectors a’ and a differ in the ith position 
only.   Le u and u’ be the resulting code words.   

Thus  u = a G, u’ = a’ G and their difference is ∆∆  = u - u’ = (a -
 a’) G.  We have a - a’ = (0,...,0,∆i,0,...,0) where ∆i is the 
difference between the same offset symbols in the old and in the 

new record. We recall that, in a GF, both the addition and the 
subtraction are equal to the XOR operation. To calculate ∆∆ , we 
only need the ith row of G.  Since u’ = u + ∆∆ , one can calculate the 
new parity values by calculating ∆∆  first and then XOR this to the 
current u value that is the content of B field of each parity record.  
In other words, with Gi being the ith row of G: 

u’  = a’⋅G = (a+(a’-a)) G = a G +  (a - a’) G = u + ∆i Gi. 
In particular, the new symbol u’j in bucket j is calculated from the 
old symbol uj, the difference ∆i between the new and the old 
symbol in the updated record, and the coefficient of G located in 
the ith row and jth column as  

u’j = uj + ∆i gi,j. 
We call ∆∆ -record the string obtained as the XOR of the new and 
the old symbols with the same offset within the updated record.   

To implement an update operation without key change, LH*RS 
sends the ∆∆ -record together with the bucket number i and the rank 
r (to identify the record group) to all parity sites.  Each parity site 
calculates the B field (or parity record proper) according to 
equation (3.1).  Coefficient gij is stored with the parity bucket as 
part of the jth column of G. 

3.2 Inserts and deletions 
An insert formally replaces a dummy record with an actual data 
record.  At the data bucket, the key field c and the non-key data 
field are updated.  Through the insertion, the new record obtains a 
rank r. The data bucket then sends the rank r, the key c, the bucket 
number i, and the non-key data as the ∆∆ -record to all parity 
buckets.  The rank identifies the parity record in need of change.  
If the parity record with this rank does not yet exist, we create it.  
The field ci of this parity record changes to c.  We calculate field 
B in the parity record by XORing the ∆∆ -record with the current 
contents of B, just as for an update.  The justification lies in the 
fact that the implicit dummy record has been changed to the new 
record. 

Likewise, a data record deletion is an update to a dummy record.  
The operation proceeds by first finding the data record and 
removing it from the data bucket.  Rank r, bucket number i, and 
the record itself as ∆∆ -record are send to all the parity buckets.  
Rank r identifies the parity record, the field ci is set to zero, and 
field B is XORed with the ∆∆ -record.  If the data record was the 
last in the group, then all key fields cj in the parity record are now 
zero.  The field B is zero as well.  We can then delete the parity 
record as well.  

3.3 Example 
Continuing with the running example, assume that we have four 
data buckets 0…3 with two parity buckets for this group, all 
buckets being empty.  We insert, and update records into 
successive buckets and at the same rank, disregarding, for the sake 
of the example, the actual LH* addressing rules.  First, we insert 
record “En arche ...” into data bucket 0.   This becomes the ∆∆ -
record, since the previous content is a dummy record, so XORing 
the symbols in the string “En arche ...” with the zero symbols 
yields of course the string “En arche ...”.  The ∆∆ -record is then 
sent to the parity buckets, together with its bucket number 0 and 
rank 1.  In hexadecimal notation, the ∆∆ -record is “45 6E 20 41 72 
...”.  The first parity bucket is bucket 4, hence it carries G4. There, 
the symbols of the ∆∆ -record get multiplied by 8, the first row 
coefficient in G4.  The result is the string “6E 59 30 68 ...” which 
becomes the field B of the first parity record with rank 1. 
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Formally, the string resulting the multiplication is XORed to the 
old content of B to become the actual B. As the old B happens to 
contain only zero symbols, there is no need to actually perform 
the XOR.  Similarly, the second parity bucket multiplies the ∆∆ -
record with F, the coefficient in the first row of G5, yielding “96 
45 D0 9F ...” in the parity field B.   

Now, we insert the second record “Dans le ...” or “41 6D 20 41 6E 
...” into bucket 1.  This string is sent to both parity buckets as the 
∆∆ -record. It multiplies there respectively F and 8, which are the 
coefficient in the second rows of G4 and of G5.  The results are 
“9F 47 D0 9F ...” and “68 53 30 68 ...” respectively.  These are 
XORed to the strings in each B that are the above “6E 59 30 68 
...” and “96 45 DO 9F ...”. This yields to “F1 1E E0 F7...” and 
“FE 17 E0 F7 ...” as the contents of the B-fields in buckets 4 and 
5. 

We insert the other two data records in the same manner.  The 
final parity record fields B become “4F 63 6E E4 …” and “48 6E 
DC EE …”.  Assume now that one changes the 1st  data record 
from “En arche …” to “In initio …”. In hexadecimal notation, the 
change is from “45 6E 20 41 72 …” to “49 6E 20 69 …”.  We 
XOR these two strings obtaining the ∆∆ -record  “0C 00 00 28…”,  
shipped to the parity buckets. This ∆∆ -record is shipped from 
bucket 0 to both parity buckets. At the first parity bucket, we first 
multiply it by the coefficient in the first row of G4.  We obtain 
“0A 00 00 3C …” We form the XOR with the existing B that is 
“4F 63 6E E4…”.  The result is “45 63 6E D8 …”.  The 
calculation at the second parity bucket proceeds in the same 
manner, except that we use of the coefficient in the first row of 
G5, namely F.  The multiplication of the ∆∆ -record by F yields “08 
00 00 D1 …”. The final XOR to the old content of B gives “45 63 
6E D8 …” as the new value. 

4  FILE MANIPULATION 
To create an LH*RS file, the application provides the group size m. 
The GF(4) or GF(8) are chosen accordingly, and the coordinator 
computes the generator matrix G. It also initializes bucket 0 and 
the first parity bucket, where it stores the first column of parity 
matrix P. All other file creation operations are as for the generic 
LH*. 

Further manipulation is in normal mode if it executes as generic 
LH* operations, except perhaps for additional operations on the 
parity buckets, assumed all accessible. An operation enters the 
degraded mode if it cannot access a record in normal mode. This 
happens for an unavailable or displaced bucket. The displaced 
bucket case occurs when a query is sent to the bucket  that in the 
meantime was recovered. Hence, it is elsewhere at the server that 
was originally a spare. The originator of the query may be 
unaware of new location. It gets then the correct address if the 
query terminates successfully in a dedicated IAM. The address is 
not necessarily of that spare that could itself become unavailable 
in the meantime. 

The operations in degraded mode are handed to the coordinator. 
From the file state, it may locate the displaced buckets. If a 
recovery should occur, the coordinator attempts to recover the 
entire bucket at a spare, or only the searched record. If there are 
less than m available records for a group, which makes the 
recovery calculus as defined above impossible, the coordinator 
enters the catastrophic mode. Case specific algorithms are then 
used. Some records may be unrecoverable, but there may be good 

cases. We will not discuss this mode in depth. An example of a 
good case is at the end of Section 7. 

We now overview the LH*RS file manipulations focusing on 
differences to generic LH*.  We start with record and bucket 
recovery. Recall that the number of data buckets in a bucket group 
is m and call the number of parity buckets in a given bucket group 
k’. The number of buckets in a segment of a k-available file is n = 
m+ k’, where k’=k or k’=k+1. 

4.1 Record Recovery 
To recover a record with key c, the coordinator probes the k’ 
parity buckets in some order, sending an unicast message with key 
c, the unavailable data bucket address a, and the address of the 
client.  If no parity bucket is available, then the failure is 
catastrophic.  Otherwise, the first parity bucket p that replies takes 
the control of the recovery, to avoid turning the coordinator into a 
bottleneck for recovery.  Bucket p searches for the parity record 
with c among its keys.  The rank r of the record cannot be 
determined from c, hence one uses a sequential scan, or the parity 
bucket maintains a hash table with entries of the form (c,r).  If c is 
not found, then the search for the key c is unsuccessful, i.e., the 
record with key c was not in the file.  Notice that this constitutes 
also a successful recovery. 

Otherwise, the parity record r found contains key c only or with x 
≤ (k’-1)  other keys. If record r contains only c,  then all the other 
records in its record group are dummy. One trivially computes 
offset i of c within its group using a and  creates H from all 
columns of I, but column i, and from its column of P. Afterwards, 
one performs the recovery calculus using the RS-decoding, as 
described. 

If record r contains several keys, the bucket searches for every 
data record with key c’ ≠ c in record r. If all are found, and x = 
(k’-1), then the bucket orders them along their offsets, produces H 
from all columns of I but i and from its own parity column and 
performs the recovery calculus. If x < k’, but all the records are 
found, then the records at the other offsets are assumed dummy. 

If however l > 0 records among x reveal unavailable, and l < k’, 
then bucket p probes other parity buckets. Each probe requests 
parity record r and column of P stored at the bucket.  If l ≥ k’, 
then the failure is again catastrophic. Idem, if less than l parity 
buckets respond to the probe. Otherwise, bucket p produces the 
columns of H from I according to the offsets of the k’ - l data 
records found, completes with the columns of P received  and 
performs the RS-decoding. 

Bucket p sends to the client the recovered record c or the 
information that key c is not in the file. It alerts the coordinator 
otherwise. 

4.2  Bucket Recovery 
Both data and parity buckets can be recovered using RS-decoding, 
as long as there are m buckets in the segment. Parity records can 
be also recovered from the data buckets through RS-encoding.  
Record recovery can be performed concurrently with bucket 
recovery, as the latter is a more involved operation.  

Unavailable buckets are recovered at spare servers.  To start, the 
coordinator probes the segment with the bucket to recover for the 
availability of the other buckets.  If m or more reply, then 
recovery proceeds, otherwise the case is catastrophic.  The 
coordinator passes their addresses and further control of the 
operation to one of the spare servers. If there are data records to 
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recover, the spare collects columns of parity matrix P at the parity 
buckets, and forms and inverts matrix H.  It then calculate the 
missing data records consecutively, stores them or sends to the 
spares where they should be.  The key fields are from the parity 
records. The non-key fields are calculated from H-1, from the non-
key fields of other data records in the group, and from the B-fields 
of the parity records.   

Once data records are recovered, the remaining parity buckets to 
recover, if any, are produced in turn, using matrix G.  If only 
parity buckets should be recovered, then one skips the 
reconstruction of data buckets.  In a final step, the spare notifies 
perhaps the originator of the query of new locations through 
IAMs. 

4.3 Key search 
Normally, the LH*RS key search for key c is the LH* key search. 
The degraded mode is triggered by the client or the forwarding 
server.  The coordinator uses the LH* file state parameters to 
calculate the address of the correct bucket.  If this address is not 
the one of the unavailable or displaced bucket, it forwards c to the 
correct bucket.  If that bucket is available, it replies to the LH*RS 
client, including the IAM.  If the coordinator finds the correct 
bucket unavailable, it attempts the record recovery. Likewise, it 
initiates the recovery of any unavailable forwarding bucket. 

4.4 Scan 
In the normal mode the scan proceeds as a LH* scan. We recall, 
that the client starts with a series of unicast messages or a 
multicast message. The request specifies whether the scan has 
deterministic or probabilistic termination. In both cases, buckets 
that have relevant records send them to the client. For the 
probabilistic termination, then only these buckets reply.  
Otherwise, every bucket in the file replies at least with the bucket 
number.  The LH* deterministic termination protocol detects 
whether every bucket has replied, even if the client image was 
outdated.  

The degraded mode occurs only if unicast messages are used to 
deliver the request or if the deterministic termination is requested.  
The coordinator attempts the corresponding bucket recovery and 
the successful termination of the scan. 

4.5  Insert 
In normal mode, a LH*RS client performs the insert like a LH* 
client. The correct data bucket resends the record as ∆∆ -record to 
all the parity buckets of the group. Their addresses are in its 
header. 

The degraded mode is triggered by the client or the forwarding 
server or the correct data bucket that finds an unavailable or 
displaced bucket.  The finder sends the record to the coordinator.  
For the client, the operation is then successfully terminated.  The 
coordinator determines the correct bucket for the insertion.  If it is 
unavailable, then it attempts the bucket recovery with the record 
to be inserted. As for the key search, it also recovers any 
unavailable forwarding bucket.  

4.6 Split 
As in the generic LH*, an insert to an overflowing bucket is 
reported to the coordinator. This usually triggers a split of the 
bucket pointed out by the split pointer n which is one of the file 
state parameters. Bucket n is typically different from that 

receiving the insert. After the split, n := n + 1 mod 2j and, if n := 0, 
then j = j+1. Initially, n = j = 0.  

In normal mode, the coordinator assigns new ranks to all the 
records, whether they remain in the parent bucket or end up in the 
new bucket. The move of a record either within the parent bucket 
(unless by chance the new and the old rank coincide) or to new 
bucket is formally a deletion followed by an insert. Existing parity 
buckets are updated accordingly.  In practice, it should be more 
efficient to recreate them. 

If a new bucket starts a group, then the coordinator creates new 
parity buckets and their records.  If the number of parity buckets 
per segment is being upgraded, the split operation appends in 
addition a new bucket to the group of the parent bucket.   

The degraded mode consists basically of the recovery of the 
bucket, combined in the implementation dependent way with its 
split. 

4.7 Update 
In the normal mode, the client performs the update as for LH*. At 
the correct bucket, the update does not change the rank r of the 
record, unless a split occurs between the time the client reads the 
record and the time of the return of the update. In the former case, 
the bucket calculates the ∆∆ -record and sends it with its rank r to 
the parity buckets. These buckets recalculate their parity records r.  
In the latter case, the parent bucket gets the updated record 
anyhow and computes whether it should  migrate or stay. In both 
case the rank r typically changes. The update by definition 
concerns only non-key data otherwise it is a record deletions and 
the insert to, usually, different location. If the updated record 
moves, there is no more parity records concerning it in its parent 
segment. It suffices thus that whether the record moves or not, 
only the bucket that finally stores it computes the ∆∆ -record and 
sends it out.  

The degraded mode may start during the search for the record to 
update or when the client sends back the update or when the 
servers sends out ∆∆ -record. If  the correct bucket is available, the 
coordinator resends the record there.  Otherwise, the coordinator 
updates the record in the recovered bucket.  If the forwarding 
bucket was unavailable, the coordinator initiates the recovery of 
this bucket. The originator of the degraded mode gets the address 
of the recovered or displaced bucket in the IAM. 

4.8 Deletion 
In the normal mode, the client performs the deletion of record c as 
for LH*. The correct bucket in addition sends its address and 
record c with its rank r, to the parity buckets. Each bucket 
removes key c from its parity record r. If c is the last key, record r 
is deleted. Otherwise, its parity field B is adjusted. 

In the degraded mode, if the data bucket is unavailable or 
displaced, the coordinator localizes the correct data bucket. It 
recovers it without the record to be deleted, as well as, perhaps, 
the unavailable forwarding or parity buckets. 

4.9 Merge 
Deletions may trigger a bucket merge that is the inverse to a split. 
In the normal mode, it moves the records of the last data bucket 
back into its parent bucket and removes the last bucket.  The 
moved records receive new ranks in the parent bucket. The parity 
buckets of both groups are updated accordingly. If the removed 
bucket was the only one in its group, then the parity buckets for 
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this group are deleted.  The number of parity buckets in the 
segment might also decrease.  In the degraded mode, first all 
unavailable buckets are recovered.  

5 PERFORMANCE 
Detailed performance analysis is lengthy [LS99]. Table 2 
summarizes basic values, intended as guidelines for the file 
design. The actual costs may be larger, or noticeably smaller. 

5.1 Access 
As usual, we measure access performance with the number of 
messages, as the metric independent of network speed and 
topology. A message contains at most one record. Table 2 shows 
the typical and the worst costs of various operations. For 
convenience, we explicitly show also the typical overhead of 
high-availability. The worst case of an operation accessing parity 
records is computed for a (k+1) available group in a k-available 
file. The worst cost beyond the practical sense is omitted (n/a). 
For instance, very unlucky hashing could skyrocket the split or 
merge cost. The typical file has bucket capacity b >> 1, size 
M >> m, i.e. has several groups, and the load factor of data 
buckets of 0.7.  It uses unicast messages, except for starting the 
parallel scans. 

 
Normal Mode 

typical max overhd 
Degraded 

Succ. key search 2 4 0 1+R 
Unsucc key search 2 4 0 4 

Scan (det term) 1+M n/a 0 1+M+yB 
Insert 1+k 3+k+1 k 1+R 

Update 2+k 6+k+1 k 1+R+B 
Delete 1+k 3+k+1 k 1+k+B 
Split 0.35b + 

+0.7bk 
n/a 0.7 bk 0.35b+0.7bk+

+B 

Merge β b +2β  
+ bk 

n/a 2β bk β b+ 2β bk+ 
+B 

 
Mode Typical Max 

Exist. record recovery (R) 1+2m 2 + 2m +k 
Bucket recovery (B) 0.7b (m+x-1) n/a 

Storage Overhead k / m (k+1) / m 
 

Table 2 LH*RS data access and high-availability performance. 

The performance of key search in normal mode is that of LH*.  It 
is independent of M and does not carry any high-availability 
overhead. The degraded mode cost includes the record recovery 
cost R. The  successful search cost typically depends on m, but, 
perhaps surprisingly, not the unsuccessful one. The degraded 
mode increases the successful search time typically (m+1) times. 
Notice that this performance is also independent of M and about 
best possible. 

The scan also performs as for LH* and does not carry the high-
availability overhead. The degraded mode carries the bucket 
recovery cost B, times the number y of unavailable buckets 
encountered in different groups. 

An insert, update or delete in normal mode carries the overhead of 
typically k messages to parity buckets. This is the theoretical 
minimum for any k-available schema. The actual overhead may be 
also k + 1 when the availability starts to scale.  This is also the 
minimal price for the scalable availability. The costs of degraded 
mode includes B at least. 

The split and merge costs in Table 2 are easy to derive. Factor  β 
denotes the data buckets load factor low enough to  trigger 
merges.   

Record recovery cost R in Table 2 results directly from the 
algorithm. The recovery starts with 1 message to the coordinator. 
Then, there is typically one message to a parity bucket of the 
failed bucket. If the searched key is not found at this bucket, there 
is only 1 more message to the client. Otherwise the bucket sends 
out typically m-1 messages to data buckets. Finally the recovered 
record is sent to the client. 

The worst case corresponds to k+1 unavailable buckets probed in 
vain. Notice from the algorithm that there are also other cases. A 
group may be incomplete, with l < m actual data records, hence 
the degraded successful search cost can be substantially under the 
typical one, reaching even only 4 messages.  More precise 
estimates of R taking to the account the likelihood of each case, 
and of x-bucket unavailability  remains to be done. 

The bucket recovery cost B estimates in Table 2 result directly 
from the algorithm. It considers the typical bucket load of 0.7b 
records, and presence of x ≥1 failures. Notice the efficiency for 
x > 1 due to the simultaneous recovery of all the unavailable 
buckets.  The worst case analysis obviously does not apply here, 
as the worst bucket load could be assumed arbitrarily high.  

Finer estimates remain to be determined. The presence of 
incomplete groups, likely for groups towards tops of the buckets, 
decreases the cost. In contrast, a parity bucket to recover should 
often have more records than a typical data bucket, hence a higher 
recovery cost. It has indeed as many records as the most loaded 
data bucket in the group. The deviation should obviously increase 
with m. It becomes more likely that some data bucket in the group 
has more records than the average load. The LH* file with 70% 
load is however known to have only a  few overflow records. 
Hence, regardless of m, a parity bucket with more than b records 
in such file is unlikely as well. 

Notice finally that Table 2 proves globally an excellent scalability  
of the LH*RS file manipulations. The costs are either independent 
of the file size M, or typically increase about as little as possible, 
basically through the necessary increase to k. We recall from 
Section 2.2 that to scale k with M is mandatory for the reliability. 
Section 5.4 analyzes this issue more in depth. 

5.2 Storage 
Each bucket group carries typically k or sometimes k+1 parity 
buckets and bucket is  the storage allocation unit for both data and 
parity records.  The file storage overhead, is thus typically  k/m. 
This is the minimal overhead for any k-available file, regardless of 
the parity calculus method used  [H&a94]. The additional 
overhead  of up to 1/m constitutes the price for the scalable 
availability. This is also the minimal cost of this capability. 

The overhead storage at each parity bucket server for RS calculus 
specific data is in practice negligible. One needs stable storage 
basically only for the m-element single column of P,  and for 
the 2f or 3*2f elements of the log multiplication table. The 
inversion of the matrix H requires only 2m2 elements of 
temporary storage.   

5.3 Parity Calculus Time 
 Parity encoding and decoding speed depend on the network and 
CPU performance. The decoding also strongly depend on the 
choice of the group size m whose larger values benefit the storage 
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overhead but make the recovery costs higher in turn. Easy but 
lengthy evaluations that we skip here show that on a rather typical 
site with 400 MHZ CPU, and 100 Mb/s network the resulting 
times should remain acceptable. For quite large m = 32, the record 
recovery time of 1KB records stored in RAM buckets is in the 
order of milliseconds. Assuming for instance the data bucket 
capacity of b = 3000 records,  the bucket recovery should take less 
than a minute. For similar disk buckets, the time for record 
recovery is about a second and bucket recovery takes a few 
minutes.   

5.4 Reliability 
The reliability is the probability that all the data are available, i.e., 
that there is no catastrophic failure. It depends on b, m, k, M and 
the probability p that a single bucket is unavailable. One can 
estimate the reliability of an LH*RS file through formulae using 
these parameters developed for LH*SA, [LMR98]. Both schemes 
use record grouping. Their differences influence the storage 
overhead and other performance factors but not the basic 
calculation of reliability.   Same parameters lead to the same 
estimate.  

k  =  4 ,  p  =  0 . 1 5

N

P

0 . 7 5 0

0 . 8 0 0

0 . 8 5 0

0 . 9 0 0

0 . 9 5 0

k  =  4 ,  p  =  0 . 1

N

P

0 . 8 5 0

0 . 9 0 0

0 . 9 5 0

1 . 0 0 0

 

Figure 3 Uncontrolled reliability of an LH*RS file 

Figure 3 shows two simulated curves of the reliability P for an 
LH*RS file with uncontrolled reliability obtained in this way. The 
values of p chosen seem conservatively realistic [S99]. They mean 
that a site is unavailable on the average for 3-5 days per month. 
Each minimum of P is at the size mi that starts next scaling up of k 
for the (k+1)-availability.  Each maximum is at the size 2mi when 
the (entire) file becomes (k+1)-available and k := k+1. The files 
scale to M=1024 buckets, i.e., somewhere between 1÷100 Tbyte. 
In both cases, without the scalable availability, P would start 
continuously decreasing from M = 8, instead of remaining above 
the value close to the reliability of a single bucket, respectively, 
above 92% and 82%.  For p = 0.15 the successive minima of P 
have the tendency to remain about the same, while for p = 0.1 
they increase progressively. This tendency would be even stronger 
for lower p. One may then delay the increase of the availability 
level k with respect to the basic schema, through the reliability 
control. The threshold Pmin on P value could be Pmin = 0.9, i.e., the 

reliability 1-p of a single bucket. Alternatively, one may choose 
larger group size m.  

The curve for p = 0.15 shows in contrast that the reliability 
evolution is close to optimal. The minimal value of P stays 
automatically about 0.85. For even higher p, and same m, the 
uncontrolled reliability would not suffice and the curve would 
decrease.  

Both curves show that, the reliability control is useful for a 
multicomputer with sites characterized by p ≤ 0.1. For less 
reliable sites with p > 0.15, it appears necessary in practice, as 
m < 4 seems the smallest useful choice.  Detailed analysis in 
[LMR98] confirms this behavior. While not only higher p but also 
a larger m may make the reliability control necessary, these  
results show nevertheless that for p << 0.1, the uncontrolled 
reliability may suffice for a quite large m. For instance for p = 
0.01, one may choose m = 16 and for p = 0.005, even m = 32 
suffices to keep P ≥ 99% up to M = 32K. 

6 VARIANTS 
An application may benefit from selected performance tuning. 
Specific variants of the basic schema may be designed to address 
this concern. First, there are numerous variants of LH* schema 
known, their choice impacts the performance of the LH*RS data 
file. They differ by the internal structure of buckets, the split 
algorithm, the strategy for the load factor control… Some variants 
do not even have the coordinator.  

There are also issues specific to the parity management. The 
implementation choices for GF multiplication, including the data 
structures for the tables, impact the calculus speed.  For instance, 
we can avoid the calculus modulo 2f-1 as in Section 2.3.1, and 
thus increase the speed of the method.  These additions or 
subtractions find an entry in the anti-logarithm table.  If one 
replicates the anti-logarithm table once above and once below the 
table used in contiguous memory location, then the non-modulo 
operations suffice. The trade-off is thus to double the table size. 
The resulting tables have 4*2f entries. In particular, GF(28)  
requires then 1 KB instead of only  512 B.  

Furthermore, other algorithms are known for matrix inversion and 
to generate matrix G.  The internal structure of a parity bucket 
obviously influences its access and storage performance. The 
bucket recovery calculus can be made parallel between the 
participated buckets.  The algorithms recovering from specific 
catastrophic failures can be added. Finally, the Reed Solomon 
Codes used are not the only possibility.  Some other codes are 
potentially attractive as well, [ABC97], [H&a94], [BFT98].  

The storage of parity buckets allows for interesting optimizations.  
The basic scheme stores parity buckets at a dedicated servers. 
This overhead to the number of servers may itself bother an 
application. Next, while the searches in normal mode do not 
concern the parity servers, a parity bucket is involved in every 
update of a data bucket in the group.  The processing load from 
data modification at a parity server is hence about m times larger 
than at a data server. An application with a large amount of data 
modifications could see the parity servers becoming bottlenecks.  

The correctness of the parity calculus does not depend on parity 
buckets being stored at separate servers.  It merely requires that no 
server contains two buckets in the same segment.  To better 
balance the load, one may replace then a single parity bucket with  
m buckets storing b/m records each, stored the different pieces at 
different servers.  The m buckets can form a simple hash subfile.  

m = 4, p = 0.15 

m = 4, p = 0.1 

M 

M 

P 

P 
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This variant equalizes the load from of the data modifications.  On 
the negative side, it requires more parity servers and sees more 
messaging during splits and reconstructions. 

To decrease the number of parity servers, one may share a server 
between a data and a parity bucket.  One simple rule locates the ith 
parity bucket of group j with the ith data bucket of group j+1.  
Figure 2 may be seen as illustrating this rule. It guarantees that all 
buckets in a segment are stored at different server.  It can be easily 
extended to the above discussed parity subfiles. In this scheme, 
every server carries at most one data bucket and zero, or some 
parity buckets.  The servers carrying data for the first group will 
never have parity data. In turn, some servers to serve the data 
buckets of the next group to be generated carry only parity 
buckets, but not yet data buckets.  The “dark size of the Moon” is 
obviously increased storage use at each server and processing 
load. 

Finally, one can have the servers for data of group 0 temporarily 
carrying  the parity buckets for the last existing group. If the file 
expands further, these buckets move to the adequate locations, 
being replaced by new last buckets. This simple loop-back 
strategy eliminates the additional parity servers entirely. It 
minimizes the number of servers for the file to M, required 
anyway for the data buckets. Notice the potential interest of this 
variant to the users of the current parallel DBMSs. Their currently 
0-available hash or even range-partitioning methods, could be 
enhanced to the high-availability at no additional hardware cost.  

7 RELATED WORK 
There were countless high-availability schemes for a single site, 
usually 1-available and using some RAID-like striping.  A few 
schemes appeared  for the (static) k > 1 k-availability in this 
context, [BM93], [BBM93], [H&a94],  and [ABC97] recently. 
There were also studies for the distributed environment, e.g. 
[SG90] showing the inefficiency of any trivial striping. Deeper 
discussion of all these schemes, including SDDS schemes with 
mirroring or replication mentioned in the Introduction, is in 
[LMR98]. However, besides the LH*RS, the only schemes known 
to satisfy all our goals, including the moderate storage overhead 
for the high-availability, are the other LH* schemes using the 
record grouping mentioned in the Introduction. Their mutual 
comparison appears as follows [LS99].   

LH*RS may offer substantially lower overhead than LH*SA. The 
reason is that the number k of parity records to make a group k-
available is always exactly the theoretical minimum k/m. This is a 
remote consequence of the MDS property of RS-codes, [MS97].  

LH*RS record recovery cost should typically be lower than that of 
LH*g. It may be higher or lower than that of LH*SA. This is due to 
more complex parity calculus of LH*RS on the one hand, or to 
possibly more messages for LH*SA to explore multiple groups, on 
the other hand. 

Variants minimizing the number of the file servers through 
sharing of data and parity buckets are known only for LH*RS.  
Such variant seem at best more difficult to design for the two 
other schemes.   

If 1-availability suffices, then LH*g has the smallest split cost. Its 
record groups are location independent and there is no need to 
recalculate the parity data during splits. Generalizing the parity 
calculus to RS-codes allows perhaps for a k-available variant of 
LH*g retaining that property [LMRS99]. 

Finally, LH*SA may often recover from l-bucket failure where l > 
k which would be catastrophic for LH*RS. The difference may be 
quite substantial. For instance, a 2-available LH*SA file may 
recover records from any l >> 2 unavailable buckets in the same 
group.  LH*RS can accommodate at most 3 unavailable buckets 
per group in a 2-available file, and only, provided it started to 
build the 3-availability.  Notice that LH*RS also has good cases, 
although the overall balance seems in favor of LH*SA. For 
instance, in our example file with record group size m = 4, made 
2-available, we can recover from the unavailability of buckets 
0,1,4, and 5. This failure is unrecoverable in a 2-available LH*SA 
file with the same groups.   

8 CONCLUSION 
LH*RS schema uses the concept of record grouping and the Reed 
Salomon codes to provide scalable, distributed and high-
availability files, badly needed by modern applications. Its 
interesting properties, including the scalable availability, near-
optimal access performance and storage use efficiency, should 
prove attractive. The schema offers distinct advantages over the 
other high-availability schemes known.  

Among potential applications, there are modern database systems, 
that need continuously larger scalable databases, and for which 
the parallel access is already a must [FBW97], [B&al95], 
[IBM99]. Many of the existing databases or warehouses grow 
very rapidly. The well-known UPS multidatabase passed from 4 
to 13 TB between 97 and 98, and many other similar examples are 
known. The multimedia servers also start using multicomputers 
and the success may make them scaling big [B&al95], [H96]. In 
the Web arena, more and more systems maintain TB of data on 
large multicomputers. This is the case of the 166–site 
multicomputer of Inktomi at Santa Clara, CA, and of the 100-site 
of Yahoo in Vienna, VA, which is also built by Inktomi, [I98]. An 
implementation of SDDSs is under study for such applications 
[G99]. For all these needs, both scalability and 24/7 availability 
are critical. The already mentioned mishap of E-Bay is here to 
stay as the reminder. 

Future work should include the prototype implementation and 
deeper analysis of various design issues, as well as of 
performance factors discussed in the related sections. This applies 
also to the variants. These goals start to be addressed for Wintel 
multicomputers, [L00]. The prototype described confirms the 
feasibility of the schema for that environment, and seems to 
perform as expected in Section 5.  

On the other hand, one should port the RS parity schema to other 
known 0-availaible SDDS schemes. This should especially 
concern the RP*schema. Finally, one should study the other 
erasure correcting codes referred to in Section 6. 
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APPENDIX A 
Let n be the maximal segment size and m the maximal group size. 
We recall that the generator matrix G of an RS-code has m rows 
and n columns. The left m x m submatrix of G is the identity 
matrix I, since we use a systematic RS code. Any square 
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submatrix formed from any m different columns of G is 
invertible. 

We derive matrix G from a Vandermonde matrix V.  V has m 
rows and n columns, these we index by the n elements gj ∈ GF(n), 
j = 0, ..., n-1. We number the columns and rows from 0 and order 
the field elements so that g0 = 0 and g1 = 1.   Coefficient vi,j 
located in the ith row and the jth column of V is then defined to be 
the jth element of the Galois Field raised to the ith power that is: 

vi,j = gj
i. 

Thus,  

 0 1 2 3

2 2 2 2
0 1 2 3

3 3 3 3
0 1 2 3

1 1 1 1

g g g g

g g g g

g g g g

 
 
 
 =
 
 
 
 

V

L
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Row 0 contains only ones since for every j, gj
0 = 1. Since g0 = 0, 

the first column contains otherwise zeroes. Since g1 = 1, the 2nd 
column contains only 1’s.  Vandermonde showed the determinant 
of any square submatrix of V consisting of m columns generated 
by elements gi to be  

det 0.j i
i j

g g
<

= − ≠∏V  

It follows that any square m by m submatrix of V is invertible.  
This property holds also for the extended V with last column 0, 0,  
... 0, 1 that we used to generate our example G in Section 2.3.4. 
We now give the details of our transformation of V into G = I|P  
where I is the identity matrix. We denote m[i,j], i,j ≥ 0, the 
coefficient of matrix m in row i and column j.  We denote the jth 
row of the current matrix with mj.  We use elementary row 
transformation [MM92].  These are multiplying a row by a scalar, 
exchanging two rows, and adding a multiple of one row to 
another.  We denote these transformations by mj ⇐ amj, mj ⇔ mi, 
mj ⇐ mj + ami, a ∈ GF(2f) respectively.  Our algorithm uses up 
to m row transformations to transform a column into a unit vector.  
The first column is already the first unit vector.  The second 
column has already the one in position [1,1], and we add the 
second row to all the other rows resulting in the second unit vector 
for the second column.  This operation retains the form of the first 
column.  We now change the third column into the unit vector.  
The diagonal element m[2,2] there is obviously non-zero. We 
multiply the third row with the inverse of this element, so that the 
coefficient m[2,2] is now 1.  Then we generate zeroes in the third 
column by adding m[i,2]m2 to all other rows mi.  This operation 
does not change the first and second column.  Continuing in this 
manner, we transform m left columns of V into unit vectors, i.e. 
the I submatrix. We give pseudo-code, à la [PTVF92], in Figure 
4: 
       Initialize m = V; 
for all columns i = 0, ..., m-1 do 

{ 
(4) mi ⇐ m[i,i]-1mi; 
 for all rows j = 0, ..., m-1, but j≠i, do 

  mj ⇐ mj − m[j,i] mi; 
} 

Figure 4  Pseudo-code to transform V into generator matrix 
G. 

Our inversion algorithm proceeds similarly.  We form the m x 2m 
matrix H|I from the m x m invertible matrix H. We transform H|I 
into I|H-1 using the algorithm in Figure 4, with one exception. As 
the diagonal element m[i,i] in line (4) may be zero, we replace 
line (4) with : 
(4a) if m[i,i] = = 0 do 
(4b) { 
(4c)    find a j > i such that m[j,i] ≠ 0; 
(4d)    mj ⇔ mi; 
(4e) } 
(4f) mi ⇐ m[i,i]-1mi; 
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