
LH*RS: A High-Availability Scalable Distributed
Data Structure using Reed Solomon Codes

Witold Litwin
Université Paris 9 (Dauphine),

Pl. du Mal de Lattre, Paris 75016, France,
Witold.Litwin@dauphine.fr

Thomas Schwarz, S.J.
Jesuit School of Theology

1756 Leroy Avenue, Berkeley, CA 94709, USA,
 schwarz@scudc.scu.edu

ABSTRACT
LH*RS is a new high-availability Scalable Distributed Data
Structure (SDDS). The data storage scheme and the search
performance of LH*RS are basically these of LH*. LH*RS manages
in addition the parity information to tolerate the unavailability of
k ≥ 1 server sites. The value of k scales with the file, to prevent
the reliability decline. The parity calculus uses the Reed-Solomon
Codes. The storage and access performance overheads to provide
the high-availability are about the smallest possible. The scheme
should prove attractive to data-intensive applications.

Keywords
SDDS, scalable, high-availability, Reed-Solomon Codes

1 INTRODUCTION
Multicomputers (collections of computers connected by a high-
speed network) are claimed to be the industry choice for the next
millennium [M97], [P98]. They combine affordability and high
performance, but also demand new data structures and algorithms,
[CACM97]. Specifically, the need for scalability led to the
proposal of Scalable Distributed Data Structures (SDDS)
[LNS96]. SDDSs allow for files whose records reside in buckets
at different server sites. The files support key-based searches and
parallel/distributed scans with function (query) shipping. They
can be hash-partitioned, or ordered with respect to the primary
key or support multikey access. Among the SDDS studied
[SDDS], probably the best known is the distributed version of
Linear Hashing [L80], called LH*, [LNS96], [KLR96], [B99a],
[K98], [R98], [SDDS].

An SDDS file is manipulated by the SDDS client sites. Each
client has its own addressing schema called image that it uses to
access the correct server where the record should be. As the
existing buckets fill up, the SDDS splits them into new buckets.
The clients are not made aware synchronously of the splits. A
client may have an outdated image and address an incorrect
server. An SDDS server has the built-in capability to forward
incorrect queries. The correct server sends finally the Image
Adjustment Message (IAM) to the client. The information in an
IAM avoids at least repeating the same error twice. It does not

necessarily make the image totally accurate.

These principles avoid the centralized address calculus that could
become a hot spot. They allow SDDS files to scale to thousands
sites. The scaling makes however a bucket unavailability (failure)
increasingly likely. A high availability scheme retains the
accessibility of all records to the application despite failures. A k-
availability scheme preserves the availability of all records despite
up to k bucket failures. A 0-availability scheme does not tolerate
any unavailability. The LH* and the traditional data structures are
0-available by this measure.

Higher values of k enhance the reliability of the file, i.e., the
probability that all stored data are available to the application,
[LMR98]. Modern databases run the 24/7 regime under web
access and exemplify the need for high availability schemes as
well as the cost of data unavailability. The well-known crash of
eBay in June 1999 resulted in the loss of $4B of market value and
of $25M in operations [B99]. The failure of a typical financial
database costs $10K-$27K per minute.

The first 1-available SDDS scheme was a variant of LH* called
LH*M, using record mirroring [LN96]. The scalable and
distributed generalizations of B+-trees, [BV98] and [VBW98],
also use the replication. In both cases, the doubling of the storage
cost may be prohibitive. High-availability variants of LH* with
lower storage overhead have therefore been developed. The 1-
availability scheme LH*S stripes every data record into m stripes,
then places each stripe into a different bucket and stores the
bitwise parity of the stripes in parity records in additional parity
buckets, [L&al97]. The storage overhead for the high-availability
is only about 1/m for m stripes per record.

Striping produces typically meaningless record fragments, and
usually impairs the parallel scans requiring entire records at each
site. Efficient scans are decisive for many applications of web
servers or parallel databases, [R98]. Another 1-availability
variant of LH* termed LH*g addressed this concern [LR97],
[L97], [LMRS99]. The application records, called data records,
remain entire in LH*g. For the high-availability, they form m-
member record groups provided each with the bitwise parity
record. The storage overhead is about 1/m, as for the striping. The
speed of searches and of parallel scans without failures is that of
generic (0-available) LH*. It is unaffected by the additional
structure for the high-availability.

The 1-availability or even k-availability for any static k cannot
prevent the reliability decrease in a scaling file. The scalable
availability scheme LH*SA was therefore designed to dynamically
increase k, [LMR98]. It uses an elaborated record grouping, where
each data record c is a member of k or k+1 groups that intersect
only in c and are 1-available. For each k, the LH*SA file is k-
available. The storage overhead may vary substantially while the
file scales. It can be close to k/m, the known minimum for k-
availability, [H&al94]. But, it can also reach over 50 %.

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
MOD 2000, Dallas, TX USA
© ACM 2000 1-58113-218-2/00/05 . . .$5.00

237

Below, we present an alternative scalable availability scheme
termed LH*RS. Through record grouping, it retains the LH*
generic efficiency of searches and scans. The k-availability results
from k or k+1 (generalized) parity records per record group. The
parity calculus uses the Reed Solomon (RS) Codes. This
mathematically complex tool proves simple and efficient in
practice. The advantages of LH*RS are “smoother” storage
overhead, always close to the minimal possible, and faster
recovery algorithm. The capabilities of LH*RS make the scheme
attractive. The other high-availability LH* scheme retain
nevertheless some advantages. The diversity should prove
attractive to implementers.

Section 2 introduces the LH*RS scheme, focusing on its use of RS
calculus. Section 3 presents the actual parity computations in an
LH*RS file. We explain the file manipulation in Section 4.
Section 5 discusses file performance and Section 6 addresses
variants to the scheme. Section 7 presents related work, and
Section 8 concludes the article. The Appendix provides some
mathematical background of RS-codes and pseudo-code for some
algorithms.

2 HIGH-AVAILABILITY OF LH*RS
SCHEMA

2.1 Record Grouping
We assume the basic familiarity with LH*. A LH*RS file consists
of an LH*-file called data file with the data records generated by
the application in data buckets 0,1,…,M-1. The LH* data file is
augmented for the high-availability with parity buckets to store
the parity records at separate servers. A data record is identified
by its key c and has also some non-key part. As for the generic
LH*, the correct bucket a for data record c in an LH*RS file is
given by the linear hashing function hj,n ; a = hj,n (c). The
parameters (j,n) called file state evolve dynamically. The client
image consists also from h, but perhaps with outdated state.
Details of the address computations are not important here.

non-key data c

Parity record r Data record c

parity bits

B c l c 1 r

(a)

(b)

•
•
•
•

•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

x
x
x
x
x
x

x
x
x
x
x
x

Figure 1. LH*RS file: (a) 2-available bucket group, (b) Data
and parity records.

We group successively created data buckets in bucket groups. All
but perhaps the last bucket group have the same size m = 2f for
some f >1. Bucket a belongs to the group numbered g = a div m,
where div denotes integer division. The last bucket group can
contain less than m buckets. For the parity calculus, we formally
complement it with dummy (not really existing) buckets with
dummy (zero) records. Every bucket group is provided with k≥1
parity buckets where the parity records for the group are stored.
Figure 1a shows a bucket group with four data buckets and their
data records (•) and two parity buckets and their parity records
(x). Each data record has a rank 1,2… that reflects the position of

the record in its data bucket. A record group contains all the data
records with the same rank r in the same bucket group. The record
group with r = 3 is enclosed for example in Figure 1a. The k
parity buckets contain parity records for each record group. A
parity record consists first of the rank r of the record group, then
of the primary keys c1, c2, … cl of all the (non-dummy) data
records in the record group, and finally of the (generalized) parity
data calculated from the data records and the number of the parity
bucket. The parity data, denoted by B in Figure 1b, differ among
the parity records. We call the ensemble of the data records in a
record group and its parity records a record segment and likewise,
the bucket group with its parity buckets a bucket segment.

2.2 Scalable Availability
Figure 2 illustrates the expansion of an LH*RS file. Parity buckets
are represented shaded and above the data file, right to the last,
actual or dummy, bucket of the group they serve. For the sake of
the example, we choose m = 4. Dummy buckets are delimited
with dotted lines. The file is created with data bucket 0 and one
parity bucket, Figure 2a. The first insert creates the first parity
record, calculated from the data record and from m-1 dummy
records. The data record and the parity record receive rank 1.
The file is 1-available.

When new records are inserted into data bucket 0, new parity
records are generated. Each new data and parity record gets the
next rank. When data bucket 0 reaches its capacity of b records,
b >> 1, it splits. Usually half of its records move into data bucket
1. During the split, both the remaining and the relocated records
receive new consecutive ranks starting with r = 1. Since there are
now (non-dummy) records with the same rank in both buckets, the
parity records are recalculated, Figure 2b.

(a) (b)

(c)

(d)

(e)

Figure 2. Scalable availability of LH*RS file. (a) initial file, (b)
first split, (c) max. 1-available file, (d) beginning 2-availability
and (e) 3-availability.

The continuing growth of the file through inserts formally
replaces the dummy records in the data buckets with actual
records. The splits append new data buckets 2,3… Eventually, a
split creates data bucket m+1. This starts the second bucket group
and its first parity bucket.

While the file continues to scale, the probability of double failure
increases. To offset the decline in reliability, the file availability
increases gracefully to two parity buckets per group. This process

12i data buckets

12 1i + data buckets

22 1i + data buckets

238

starts, Figure 2c and Figure 2d, when the file reaches some size

M = 2i1. Next bucket split is then bucket 0. We recall that LH*
scheme splits the buckets in the deterministic order 0,0,1…2i –
 1,0… On the one hand, each new bucket group is from now on
formed with two parity buckets. On the other hand, a second
parity bucket is appended to each existing bucket group during the

split of its 1st member. When M reaches M = 2i1+1, i.e., when the
file has doubled in size, all groups have two parity buckets. At this
point, the file is 2-available and can survive failure of any two
buckets.

Further scaling makes a triple failure increasingly likely. To offset
the reliability decline, one has to further increase the availability

level. This starts again when the file reaches some size M = 2i2; i2
> i1 so that next bucket to split is again bucket 0, Figure 2e. Each
split, starting from that of bucket 0 again, creates then three parity
buckets for the newly appended data bucket, and adds a third
parity bucket to the two already present for the splitting data

bucket. Once data bucket M = 2i2 splits in this way, all bucket
groups are 3-available, and the file has reached 3-availability.
This process can continue towards 4-availability, etc., making
LH*RS a scalable availability schema.

The values of i1, i2 etc. which determine when the availability
level starts to increase, are controlled by the LH*RS-coordinator.
Essentially, the LH*RS coordinator is the LH* coordinator
provided with additional capabilities for the high-availability. We
recall that the LH* coordinator handles the file state parameters
which it uses to calculate next bucket to split when some, usually
another, bucket reports an insert creating an overload. In addition,
the LH*RS coordinator initiates the creation of parity buckets for
new groups and the scaling up of the availability. It also manages
the record and bucket recovery.

The scheme allows for a variety of strategies in the management
of availability. The basic strategy starts increasing the k-
availability towards (k + 1)-availability whenever the files reaches
mk buckets. In the notation from above, this variant chooses

2i1 = m, 2i2 = m2 etc. We call this strategy, as any other using
predefined values of i, uncontrolled reliability. We implement the
reliability control strategy by dynamically choosing i based on the
file reliability as monitored by the coordinator. Whenever bucket
0 is next in line for a split, the scheme decides whether the
reliability level would drop under some threshold Pmin before
bucket 0 is again about to be split, and starts to create (k + 1)
parity buckets if necessary. The basic Pmin is the reliability of a
single bucket. Section 5.4 discusses the reliability control more
in depth.

2.3 Parity Coding
LH*RS parity calculus uses the linear RS codes. These are
originally error correcting codes, among most efficient, since they
are maximal distance separating (MDS) codes. We use them as
erasure correcting codes recovering unknown data values. We
first recall the theory of Galois Fields, at the basis of the RS
codes. We use terms from [MS97].

2.3.1 Galois Fields
A Galois Field GF(N) is a set with N elements and the arithmetic
operations of addition, subtraction, multiplication, and division.
There are two distinguished elements, a zero element, written 0,
and a one element, written 1. The operations over GF(N) possess

the usual properties of their analogues in the real numbers
including the properties of 0 and 1.

For LH*RS, we only use GF(2f) for some f > 0. We represents the
elements of the field as f-bit strings. The byte based structure of
modern computers suggests f = 4 or f = 8. Generally, the
implementation of multiplication consumes more resources for
larger values for f , whereas a smaller value of f limits too much
the number of parity records in a record group.

For every f, the bit representation of zero is 0 = 00…0 and of one
is 1 = 0…01. For bytes, one thus has 0 = 0000 0000 and 1 = 0000
0001. The addition and the subtraction of two elements are the
same and equal to their Exclusive-Or (XOR). The definition of
multiplication and division is more cumbersome. Mathematically
most convenient is the definition of the multiplication based on
representing the elements of GF(2f) as polynomials of degree f
over the field GF(2) = {0,1}. The multiplication is then the
multiplication of polynomials and the product is reduced modulo
a certain generator polynomial. These generator polynomials are
irreducible polynomials of the appropriate degree. The
mathematical tables with generator polynomials for interesting
field sizes are in [MS97].

String int hex log
0000 0 0 -∞∞
0001 1 1 0
0010 2 2 1
0011 3 3 4
0100 4 4 2
0101 5 5 8
0110 6 6 5
0111 7 7 10
1000 8 8 3
1001 9 9 14
1010 10 A 9
1011 11 B 7
1100 12 C 6
1101 13 D 13
1110 14 E 11
1111 15 F 12

Table 1. Log table for the multiplication in GF(16).

GF multiplication via polynomial multiplication is hardly
efficient. Rather, one uses table look-up. Two methods are
attractive: (1) a complete multiplication table supplemented by a
table of multiplicative inverses, and (2) the logarithm and the
antilogarithm tables. Method (1) is conceptually the easiest. Its
drawback is the size of the multiplication table. For bytes, the
multiplication table would contain 28⋅28=216 entries or 64KB. In
addition, the table is two-dimensional and calculating the address
of an entry introduces additional overhead.

Method (2) is based on the existence of the primitive elements in
any GF. The property of each primitive element p is that every
non-zero field element is a power of p. We choose p and
determine for each element g in the GF the power i such that
pi=g. We call i the logarithm of g and write i = logp(g).
Inversely, we call g the anti-logarithm of i and write g = antilogp
(i). We tabulate logarithms and antilogarithms in two tables, each
of the size of the field. We thus have 2f+1 entries in total, many
times less than method (1) requires for a larger field, e.g. only 512

239

entries for GF(256). We implement multiplication and division of
Galois field elements using these tables. For every two elements
g and h ∈ GF(2f):

g⋅ h = antilogp (logp(g) + logp(h))
g/h = antilogp (logp(g) - logp(h)).

The addition or subtraction is here modulo 2f – 1 which is the
number of non-zero elements in GF.

2.3.2 Example
Consider GF(16) so f = 4 and there are 15 non-zero elements.
There are different implementations of this field, one is in Table
1. Each field element can be represented as a bit string, an
integer, and as a hexadecimal digit. The primitive element is 2,
the zero element is 0, and the one element is 1.

Addition remains the XOR operation as given by the ^ operator in
C, C++, and Java. As an example of arithmetic, we calculate the
sum, product, and quotient of the two field elements A = 10 and
B = 11 in the integer notation. For the sum, we calculate A+B =
1010 ^ 1011 = 0001 = 1. For the product, we take the logarithms
9 and 7, add them up modulo 15, to obtain 1. The number with
logarithm 1 is 2, hence A*B = 2. To calculate A/B, we subtract the
two logarithms, by taking the remainder modulo 15 we change the
difference to a number between 0 and 15, and then we take the
antilogarithm. Since log(A) – log(B)= -2 ≡ 13, and since
antilog(13) = D, we have A/B=D. In the faster version of method
(2), we use the offset –2 into the extended anti-logarithm table.

2.3.3 Parity Encoding
We use n for the maximal segment size, m for the record group
size, and k for the number of parity buckets. Thus, n = m + k, and
the group is k-available.

For the parity calculus, we identify the data record with its non-
key field and the parity record with its parity field B. Since the
data record key is replicated in the parity records, it becomes part
of the parity calculus. We assume that data records in a record
group are of the same length. Otherwise we pad the shorter
records with 0 bits to obtain the same length. We treat any record
as a bit string. We break each string into symbols of length f. If f
does not divide the length of the string, we again pad with 0 bits.
If we choose f = 4, 8, this padding should not be necessary. We
identify the set of all possible symbols with the elements in
GF(2f).

We generate each parity record for the record group from the data
records one symbol at a time. For the sake of presentation, we
assume that all parity records are generated at the same time.
Similarly, we assume that all data records in the record group are
inserted into the file simultaneously. We show the actual
operations in Section 3. Finally, we assume the coding calculus to
be centralized, while – as we will see - it is distributed in the
LH*RS scheme.

We are thus given m data records, each of which is a string of
symbols. We calculate now the first symbol in all the parity
records simultaneously. Subsequent symbols are calculated in
precisely the same manner. First, we form the vector a =
(a1,a2,a3,...,am) where ai is the symbol from the ith record in the
group. We collect the first symbol in all records (data and parity)
in the vector u = (a1,a2,...,am,am+1,...,an), to which we refer as a
code word. The first m coordinates of u are the coordinates of a.
The remaining k coordinates of u are the newly generated parity
bucket symbols.

We obtain u from a by multiplying a from the right with a
generator matrix G of the linear (systematic) RS-code; namely u
= a G. G has m rows and n columns. G is systematic, that is, G
consists of two concatenated sub matrices; namely G = I|P.
Matrix I is a m x m identity matrix, hence a I = a. That is why
first m coordinates of u form a. Only the columns of the parity
matrix P operationally contribute to the k parity symbols. Each
parity symbol within ith parity record is produced by the vector
multiplication of a by the ith column of P. The entire record
corresponds to the iteration of this multiplication over all the data
symbols.

Matrix G is generated algorithmically through appropriate
elementary row transformations from m x n matrix V that is a
Vandermonde matrix (either simple or extended) [MS97]. The
algorithm is in Appendix A. Different values of k lead to different
elements in P, despite same n. In practice, there are only the k
columns p of P present in the file. Each parity bucket contains
only one p. This suffices as the parity symbol is the result of the
product of u with the column p.

The maximum number of columns of G is 2f +1, e.g. 257 for byte
sized symbols. The number of parity records for a record group is
limited by this bound, which however appears to be sufficient for
byte sized symbols. We know a way to overcome this bound
dynamically, but this method is beyond our scope here.

2.3.4 Example
For the sake of simplicity, we continue with GF(16). The
maximal segment size supported by GF(16) is n = 17. We set
the bucket group size to m = 4. Our file availability level can
scale to 13-availability. There is a way to allow even higher
availability through dynamic switch to the field GF(256),
although we will not present it. We calculate a generator matrix
G as in Appendix A to be

1 0 0 0 8 1 7 7 9 3 2 7 7

0 1 0 0 8 7 1 9 7 3 2 7 7

0 0 1 0 1 7 8 3 7 9 7 2 7

0 0 0 1 7 1 8 3 9 7 7 2 7

F C A E

F C A E

F C E A

F C E A

 =

G

The left four columns of G form the identity matrix. Any four
different columns of G form an invertible matrix. The
multiplication of four-dimensional vector a by G leads to 17-
dimensional vector. Because of the 4 x 4 identity submatrix of G,
the first four coordinates of the vector replicate a. The other 13
coordinates are symbols for successive parity records.

Assume the following four data records: “En arche ...”, “Dans le
...”, “Am Anfang ...”, “In the beginning…”. The bit strings in GF
corresponding to the ASCII encoding for our four records are (in
hexadecimal notation): “45 6E 20 41 72 …”, “41 6D 20 41 6E
…”, “44 61 6E 73 20 …”, “49 6E 20 70 74…”. To calculate the
first symbols in each parity record we form the vector a =
(4,4,4,4) and multiply it by G. The product is vector u =
(4,4,4,4,4,4,4,4,4,4,4,4, 4,4,4,4,4,0). For the second symbol in
each parity bucket, we form the vector a = (5,1,4,9) and multiply
by G to obtain code word u = (5,1,4,9,F,8,A,4,B,1,1,2,7,E,9,9,A).
Notice that the first four coordinates of u always replicate the
coordinates of a. We do not have to calculate all coordinates of u
at once, but can calculate them individually instead. For example,
to calculate the fifth coordinate of 2nd u, we multiply vector a with
the fifth column of G. Expressing this more conveniently using
the dot product, we calculate (using GF instead of integer
operations):

240

a ⋅ (8,F,1,7) = (5,1,4,9) ⋅ (8,1,F,7) = 5⋅8 + 1⋅F + 4⋅1 + 9⋅7 =

= E+ F+ 4 + A = F.
The matrix notation merely combines all 17 dot product
calculations. In this manner, we obtain “4F 63 6E E4 …” for the
first parity record, “48 6E DC EE …” for the second parity record,
and “4A 66 49 DD …” for the third.

2.3.5 Record Recovery
Assume that LH*RS finds at most k data or parity records of a
record segment to be unavailable. Collect any m available records
of the segment. Also, concatenate the corresponding columns of
G into the m x m matrix H. By virtue of the Vandermonde
matrix, any m x m submatrix of G is invertible. Using for example
Gaussian elimination, we compute H-1. Collect the symbols with
the same offset from the m records into a vector b. By definition,
a⋅H = b implying b⋅H-1 = a. Hence, multiply b by H-1 to recover
the missing symbols with the same offset. Using the same H-1,
iterate through the entire available records, to produce all missing
records.

2.3.6 Example
Consider that first three data records above became unavailable,
i.e., only the fourth data record and the first, second and third
parity records are available. We form H from the columns 3 to 6:

0 8 1

0 8 7

0 1 7 8

1 7 1

F

F

F

 =

H

Inversion of H yields:

1

1

4 2 0
.

4 7 0

2 4 0

B F A

C

D

D

−

 =

H

The first vector b formed from the first symbols of the three
remaining records is b = (4,4,4,4). Hence, b⋅⋅H-1 = (4,4,4,4). The
next symbols lead to b = (9,F,8,A) and b· H-1= (5,1,4,9) etc. The
first coordinates of b vectors provide the first missing data record
“45...”, the second coordinates the second data record “41...”, the
third coordinates the third data record “44…”, and the fourth
coordinates merely reproduce the fourth data record “49...”

3 ACTUAL PARITY CODING
The basic operations on a data record are that of insertion,
deletion, or update. For the parity calculus, the update is the
generic operation, the inserts and deletes are seen as special cases.
An update basically changes only the non-key data, and related
parity records. An update to the key is dealt with as a deletion
followed by an insert into usually a new location. An insert is
formally an update of a dummy record into the actual one. Vice
versa, a deletion is an update into the dummy record.

3.1 Updates
We consider an update to the ith data record in its group. Let a be
the vector with symbols with the same offset of the data records in
the record group before the update and a’ the vector formed
similarly after the update. Vectors a’ and a differ in the ith position
only. Le u and u’ be the resulting code words.

Thus u = a G, u’ = a’ G and their difference is ∆∆ = u - u’ = (a -
 a’) G. We have a - a’ = (0,...,0,∆i,0,...,0) where ∆i is the
difference between the same offset symbols in the old and in the

new record. We recall that, in a GF, both the addition and the
subtraction are equal to the XOR operation. To calculate ∆∆ , we
only need the ith row of G. Since u’ = u + ∆∆ , one can calculate the
new parity values by calculating ∆∆ first and then XOR this to the
current u value that is the content of B field of each parity record.
In other words, with Gi being the ith row of G:

u’ = a’⋅G = (a+(a’-a)) G = a G + (a - a’) G = u + ∆i Gi.
In particular, the new symbol u’j in bucket j is calculated from the
old symbol uj, the difference ∆i between the new and the old
symbol in the updated record, and the coefficient of G located in
the ith row and jth column as

u’j = uj + ∆i gi,j.
We call ∆∆ -record the string obtained as the XOR of the new and
the old symbols with the same offset within the updated record.

To implement an update operation without key change, LH*RS
sends the ∆∆ -record together with the bucket number i and the rank
r (to identify the record group) to all parity sites. Each parity site
calculates the B field (or parity record proper) according to
equation (3.1). Coefficient gij is stored with the parity bucket as
part of the jth column of G.

3.2 Inserts and deletions
An insert formally replaces a dummy record with an actual data
record. At the data bucket, the key field c and the non-key data
field are updated. Through the insertion, the new record obtains a
rank r. The data bucket then sends the rank r, the key c, the bucket
number i, and the non-key data as the ∆∆ -record to all parity
buckets. The rank identifies the parity record in need of change.
If the parity record with this rank does not yet exist, we create it.
The field ci of this parity record changes to c. We calculate field
B in the parity record by XORing the ∆∆ -record with the current
contents of B, just as for an update. The justification lies in the
fact that the implicit dummy record has been changed to the new
record.

Likewise, a data record deletion is an update to a dummy record.
The operation proceeds by first finding the data record and
removing it from the data bucket. Rank r, bucket number i, and
the record itself as ∆∆ -record are send to all the parity buckets.
Rank r identifies the parity record, the field ci is set to zero, and
field B is XORed with the ∆∆ -record. If the data record was the
last in the group, then all key fields cj in the parity record are now
zero. The field B is zero as well. We can then delete the parity
record as well.

3.3 Example
Continuing with the running example, assume that we have four
data buckets 0…3 with two parity buckets for this group, all
buckets being empty. We insert, and update records into
successive buckets and at the same rank, disregarding, for the sake
of the example, the actual LH* addressing rules. First, we insert
record “En arche ...” into data bucket 0. This becomes the ∆∆ -
record, since the previous content is a dummy record, so XORing
the symbols in the string “En arche ...” with the zero symbols
yields of course the string “En arche ...”. The ∆∆ -record is then
sent to the parity buckets, together with its bucket number 0 and
rank 1. In hexadecimal notation, the ∆∆ -record is “45 6E 20 41 72
...”. The first parity bucket is bucket 4, hence it carries G4. There,
the symbols of the ∆∆ -record get multiplied by 8, the first row
coefficient in G4. The result is the string “6E 59 30 68 ...” which
becomes the field B of the first parity record with rank 1.

241

Formally, the string resulting the multiplication is XORed to the
old content of B to become the actual B. As the old B happens to
contain only zero symbols, there is no need to actually perform
the XOR. Similarly, the second parity bucket multiplies the ∆∆ -
record with F, the coefficient in the first row of G5, yielding “96
45 D0 9F ...” in the parity field B.

Now, we insert the second record “Dans le ...” or “41 6D 20 41 6E
...” into bucket 1. This string is sent to both parity buckets as the
∆∆ -record. It multiplies there respectively F and 8, which are the
coefficient in the second rows of G4 and of G5. The results are
“9F 47 D0 9F ...” and “68 53 30 68 ...” respectively. These are
XORed to the strings in each B that are the above “6E 59 30 68
...” and “96 45 DO 9F ...”. This yields to “F1 1E E0 F7...” and
“FE 17 E0 F7 ...” as the contents of the B-fields in buckets 4 and
5.

We insert the other two data records in the same manner. The
final parity record fields B become “4F 63 6E E4 …” and “48 6E
DC EE …”. Assume now that one changes the 1st data record
from “En arche …” to “In initio …”. In hexadecimal notation, the
change is from “45 6E 20 41 72 …” to “49 6E 20 69 …”. We
XOR these two strings obtaining the ∆∆ -record “0C 00 00 28…”,
shipped to the parity buckets. This ∆∆ -record is shipped from
bucket 0 to both parity buckets. At the first parity bucket, we first
multiply it by the coefficient in the first row of G4. We obtain
“0A 00 00 3C …” We form the XOR with the existing B that is
“4F 63 6E E4…”. The result is “45 63 6E D8 …”. The
calculation at the second parity bucket proceeds in the same
manner, except that we use of the coefficient in the first row of
G5, namely F. The multiplication of the ∆∆ -record by F yields “08
00 00 D1 …”. The final XOR to the old content of B gives “45 63
6E D8 …” as the new value.

4 FILE MANIPULATION
To create an LH*RS file, the application provides the group size m.
The GF(4) or GF(8) are chosen accordingly, and the coordinator
computes the generator matrix G. It also initializes bucket 0 and
the first parity bucket, where it stores the first column of parity
matrix P. All other file creation operations are as for the generic
LH*.

Further manipulation is in normal mode if it executes as generic
LH* operations, except perhaps for additional operations on the
parity buckets, assumed all accessible. An operation enters the
degraded mode if it cannot access a record in normal mode. This
happens for an unavailable or displaced bucket. The displaced
bucket case occurs when a query is sent to the bucket that in the
meantime was recovered. Hence, it is elsewhere at the server that
was originally a spare. The originator of the query may be
unaware of new location. It gets then the correct address if the
query terminates successfully in a dedicated IAM. The address is
not necessarily of that spare that could itself become unavailable
in the meantime.

The operations in degraded mode are handed to the coordinator.
From the file state, it may locate the displaced buckets. If a
recovery should occur, the coordinator attempts to recover the
entire bucket at a spare, or only the searched record. If there are
less than m available records for a group, which makes the
recovery calculus as defined above impossible, the coordinator
enters the catastrophic mode. Case specific algorithms are then
used. Some records may be unrecoverable, but there may be good

cases. We will not discuss this mode in depth. An example of a
good case is at the end of Section 7.

We now overview the LH*RS file manipulations focusing on
differences to generic LH*. We start with record and bucket
recovery. Recall that the number of data buckets in a bucket group
is m and call the number of parity buckets in a given bucket group
k’. The number of buckets in a segment of a k-available file is n =
m+ k’, where k’=k or k’=k+1.

4.1 Record Recovery
To recover a record with key c, the coordinator probes the k’
parity buckets in some order, sending an unicast message with key
c, the unavailable data bucket address a, and the address of the
client. If no parity bucket is available, then the failure is
catastrophic. Otherwise, the first parity bucket p that replies takes
the control of the recovery, to avoid turning the coordinator into a
bottleneck for recovery. Bucket p searches for the parity record
with c among its keys. The rank r of the record cannot be
determined from c, hence one uses a sequential scan, or the parity
bucket maintains a hash table with entries of the form (c,r). If c is
not found, then the search for the key c is unsuccessful, i.e., the
record with key c was not in the file. Notice that this constitutes
also a successful recovery.

Otherwise, the parity record r found contains key c only or with x
≤ (k’-1) other keys. If record r contains only c, then all the other
records in its record group are dummy. One trivially computes
offset i of c within its group using a and creates H from all
columns of I, but column i, and from its column of P. Afterwards,
one performs the recovery calculus using the RS-decoding, as
described.

If record r contains several keys, the bucket searches for every
data record with key c’ ≠ c in record r. If all are found, and x =
(k’-1), then the bucket orders them along their offsets, produces H
from all columns of I but i and from its own parity column and
performs the recovery calculus. If x < k’, but all the records are
found, then the records at the other offsets are assumed dummy.

If however l > 0 records among x reveal unavailable, and l < k’,
then bucket p probes other parity buckets. Each probe requests
parity record r and column of P stored at the bucket. If l ≥ k’,
then the failure is again catastrophic. Idem, if less than l parity
buckets respond to the probe. Otherwise, bucket p produces the
columns of H from I according to the offsets of the k’ - l data
records found, completes with the columns of P received and
performs the RS-decoding.

Bucket p sends to the client the recovered record c or the
information that key c is not in the file. It alerts the coordinator
otherwise.

4.2 Bucket Recovery
Both data and parity buckets can be recovered using RS-decoding,
as long as there are m buckets in the segment. Parity records can
be also recovered from the data buckets through RS-encoding.
Record recovery can be performed concurrently with bucket
recovery, as the latter is a more involved operation.

Unavailable buckets are recovered at spare servers. To start, the
coordinator probes the segment with the bucket to recover for the
availability of the other buckets. If m or more reply, then
recovery proceeds, otherwise the case is catastrophic. The
coordinator passes their addresses and further control of the
operation to one of the spare servers. If there are data records to

242

recover, the spare collects columns of parity matrix P at the parity
buckets, and forms and inverts matrix H. It then calculate the
missing data records consecutively, stores them or sends to the
spares where they should be. The key fields are from the parity
records. The non-key fields are calculated from H-1, from the non-
key fields of other data records in the group, and from the B-fields
of the parity records.

Once data records are recovered, the remaining parity buckets to
recover, if any, are produced in turn, using matrix G. If only
parity buckets should be recovered, then one skips the
reconstruction of data buckets. In a final step, the spare notifies
perhaps the originator of the query of new locations through
IAMs.

4.3 Key search
Normally, the LH*RS key search for key c is the LH* key search.
The degraded mode is triggered by the client or the forwarding
server. The coordinator uses the LH* file state parameters to
calculate the address of the correct bucket. If this address is not
the one of the unavailable or displaced bucket, it forwards c to the
correct bucket. If that bucket is available, it replies to the LH*RS
client, including the IAM. If the coordinator finds the correct
bucket unavailable, it attempts the record recovery. Likewise, it
initiates the recovery of any unavailable forwarding bucket.

4.4 Scan
In the normal mode the scan proceeds as a LH* scan. We recall,
that the client starts with a series of unicast messages or a
multicast message. The request specifies whether the scan has
deterministic or probabilistic termination. In both cases, buckets
that have relevant records send them to the client. For the
probabilistic termination, then only these buckets reply.
Otherwise, every bucket in the file replies at least with the bucket
number. The LH* deterministic termination protocol detects
whether every bucket has replied, even if the client image was
outdated.

The degraded mode occurs only if unicast messages are used to
deliver the request or if the deterministic termination is requested.
The coordinator attempts the corresponding bucket recovery and
the successful termination of the scan.

4.5 Insert
In normal mode, a LH*RS client performs the insert like a LH*
client. The correct data bucket resends the record as ∆∆ -record to
all the parity buckets of the group. Their addresses are in its
header.

The degraded mode is triggered by the client or the forwarding
server or the correct data bucket that finds an unavailable or
displaced bucket. The finder sends the record to the coordinator.
For the client, the operation is then successfully terminated. The
coordinator determines the correct bucket for the insertion. If it is
unavailable, then it attempts the bucket recovery with the record
to be inserted. As for the key search, it also recovers any
unavailable forwarding bucket.

4.6 Split
As in the generic LH*, an insert to an overflowing bucket is
reported to the coordinator. This usually triggers a split of the
bucket pointed out by the split pointer n which is one of the file
state parameters. Bucket n is typically different from that

receiving the insert. After the split, n := n + 1 mod 2j and, if n := 0,
then j = j+1. Initially, n = j = 0.

In normal mode, the coordinator assigns new ranks to all the
records, whether they remain in the parent bucket or end up in the
new bucket. The move of a record either within the parent bucket
(unless by chance the new and the old rank coincide) or to new
bucket is formally a deletion followed by an insert. Existing parity
buckets are updated accordingly. In practice, it should be more
efficient to recreate them.

If a new bucket starts a group, then the coordinator creates new
parity buckets and their records. If the number of parity buckets
per segment is being upgraded, the split operation appends in
addition a new bucket to the group of the parent bucket.

The degraded mode consists basically of the recovery of the
bucket, combined in the implementation dependent way with its
split.

4.7 Update
In the normal mode, the client performs the update as for LH*. At
the correct bucket, the update does not change the rank r of the
record, unless a split occurs between the time the client reads the
record and the time of the return of the update. In the former case,
the bucket calculates the ∆∆ -record and sends it with its rank r to
the parity buckets. These buckets recalculate their parity records r.
In the latter case, the parent bucket gets the updated record
anyhow and computes whether it should migrate or stay. In both
case the rank r typically changes. The update by definition
concerns only non-key data otherwise it is a record deletions and
the insert to, usually, different location. If the updated record
moves, there is no more parity records concerning it in its parent
segment. It suffices thus that whether the record moves or not,
only the bucket that finally stores it computes the ∆∆ -record and
sends it out.

The degraded mode may start during the search for the record to
update or when the client sends back the update or when the
servers sends out ∆∆ -record. If the correct bucket is available, the
coordinator resends the record there. Otherwise, the coordinator
updates the record in the recovered bucket. If the forwarding
bucket was unavailable, the coordinator initiates the recovery of
this bucket. The originator of the degraded mode gets the address
of the recovered or displaced bucket in the IAM.

4.8 Deletion
In the normal mode, the client performs the deletion of record c as
for LH*. The correct bucket in addition sends its address and
record c with its rank r, to the parity buckets. Each bucket
removes key c from its parity record r. If c is the last key, record r
is deleted. Otherwise, its parity field B is adjusted.

In the degraded mode, if the data bucket is unavailable or
displaced, the coordinator localizes the correct data bucket. It
recovers it without the record to be deleted, as well as, perhaps,
the unavailable forwarding or parity buckets.

4.9 Merge
Deletions may trigger a bucket merge that is the inverse to a split.
In the normal mode, it moves the records of the last data bucket
back into its parent bucket and removes the last bucket. The
moved records receive new ranks in the parent bucket. The parity
buckets of both groups are updated accordingly. If the removed
bucket was the only one in its group, then the parity buckets for

243

this group are deleted. The number of parity buckets in the
segment might also decrease. In the degraded mode, first all
unavailable buckets are recovered.

5 PERFORMANCE
Detailed performance analysis is lengthy [LS99]. Table 2
summarizes basic values, intended as guidelines for the file
design. The actual costs may be larger, or noticeably smaller.

5.1 Access
As usual, we measure access performance with the number of
messages, as the metric independent of network speed and
topology. A message contains at most one record. Table 2 shows
the typical and the worst costs of various operations. For
convenience, we explicitly show also the typical overhead of
high-availability. The worst case of an operation accessing parity
records is computed for a (k+1) available group in a k-available
file. The worst cost beyond the practical sense is omitted (n/a).
For instance, very unlucky hashing could skyrocket the split or
merge cost. The typical file has bucket capacity b >> 1, size
M >> m, i.e. has several groups, and the load factor of data
buckets of 0.7. It uses unicast messages, except for starting the
parallel scans.

Normal Mode

typical max overhd
Degraded

Succ. key search 2 4 0 1+R
Unsucc key search 2 4 0 4

Scan (det term) 1+M n/a 0 1+M+yB
Insert 1+k 3+k+1 k 1+R

Update 2+k 6+k+1 k 1+R+B
Delete 1+k 3+k+1 k 1+k+B
Split 0.35b +

+0.7bk
n/a 0.7 bk 0.35b+0.7bk+

+B

Merge β b +2β
+ bk

n/a 2β bk β b+ 2β bk+
+B

Mode Typical Max

Exist. record recovery (R) 1+2m 2 + 2m +k
Bucket recovery (B) 0.7b (m+x-1) n/a

Storage Overhead k / m (k+1) / m

Table 2 LH*RS data access and high-availability performance.

The performance of key search in normal mode is that of LH*. It
is independent of M and does not carry any high-availability
overhead. The degraded mode cost includes the record recovery
cost R. The successful search cost typically depends on m, but,
perhaps surprisingly, not the unsuccessful one. The degraded
mode increases the successful search time typically (m+1) times.
Notice that this performance is also independent of M and about
best possible.

The scan also performs as for LH* and does not carry the high-
availability overhead. The degraded mode carries the bucket
recovery cost B, times the number y of unavailable buckets
encountered in different groups.

An insert, update or delete in normal mode carries the overhead of
typically k messages to parity buckets. This is the theoretical
minimum for any k-available schema. The actual overhead may be
also k + 1 when the availability starts to scale. This is also the
minimal price for the scalable availability. The costs of degraded
mode includes B at least.

The split and merge costs in Table 2 are easy to derive. Factor β
denotes the data buckets load factor low enough to trigger
merges.

Record recovery cost R in Table 2 results directly from the
algorithm. The recovery starts with 1 message to the coordinator.
Then, there is typically one message to a parity bucket of the
failed bucket. If the searched key is not found at this bucket, there
is only 1 more message to the client. Otherwise the bucket sends
out typically m-1 messages to data buckets. Finally the recovered
record is sent to the client.

The worst case corresponds to k+1 unavailable buckets probed in
vain. Notice from the algorithm that there are also other cases. A
group may be incomplete, with l < m actual data records, hence
the degraded successful search cost can be substantially under the
typical one, reaching even only 4 messages. More precise
estimates of R taking to the account the likelihood of each case,
and of x-bucket unavailability remains to be done.

The bucket recovery cost B estimates in Table 2 result directly
from the algorithm. It considers the typical bucket load of 0.7b
records, and presence of x ≥1 failures. Notice the efficiency for
x > 1 due to the simultaneous recovery of all the unavailable
buckets. The worst case analysis obviously does not apply here,
as the worst bucket load could be assumed arbitrarily high.

Finer estimates remain to be determined. The presence of
incomplete groups, likely for groups towards tops of the buckets,
decreases the cost. In contrast, a parity bucket to recover should
often have more records than a typical data bucket, hence a higher
recovery cost. It has indeed as many records as the most loaded
data bucket in the group. The deviation should obviously increase
with m. It becomes more likely that some data bucket in the group
has more records than the average load. The LH* file with 70%
load is however known to have only a few overflow records.
Hence, regardless of m, a parity bucket with more than b records
in such file is unlikely as well.

Notice finally that Table 2 proves globally an excellent scalability
of the LH*RS file manipulations. The costs are either independent
of the file size M, or typically increase about as little as possible,
basically through the necessary increase to k. We recall from
Section 2.2 that to scale k with M is mandatory for the reliability.
Section 5.4 analyzes this issue more in depth.

5.2 Storage
Each bucket group carries typically k or sometimes k+1 parity
buckets and bucket is the storage allocation unit for both data and
parity records. The file storage overhead, is thus typically k/m.
This is the minimal overhead for any k-available file, regardless of
the parity calculus method used [H&a94]. The additional
overhead of up to 1/m constitutes the price for the scalable
availability. This is also the minimal cost of this capability.

The overhead storage at each parity bucket server for RS calculus
specific data is in practice negligible. One needs stable storage
basically only for the m-element single column of P, and for
the 2f or 3*2f elements of the log multiplication table. The
inversion of the matrix H requires only 2m2 elements of
temporary storage.

5.3 Parity Calculus Time
 Parity encoding and decoding speed depend on the network and
CPU performance. The decoding also strongly depend on the
choice of the group size m whose larger values benefit the storage

244

overhead but make the recovery costs higher in turn. Easy but
lengthy evaluations that we skip here show that on a rather typical
site with 400 MHZ CPU, and 100 Mb/s network the resulting
times should remain acceptable. For quite large m = 32, the record
recovery time of 1KB records stored in RAM buckets is in the
order of milliseconds. Assuming for instance the data bucket
capacity of b = 3000 records, the bucket recovery should take less
than a minute. For similar disk buckets, the time for record
recovery is about a second and bucket recovery takes a few
minutes.

5.4 Reliability
The reliability is the probability that all the data are available, i.e.,
that there is no catastrophic failure. It depends on b, m, k, M and
the probability p that a single bucket is unavailable. One can
estimate the reliability of an LH*RS file through formulae using
these parameters developed for LH*SA, [LMR98]. Both schemes
use record grouping. Their differences influence the storage
overhead and other performance factors but not the basic
calculation of reliability. Same parameters lead to the same
estimate.

k = 4 , p = 0 . 1 5

N

P

0 . 7 5 0

0 . 8 0 0

0 . 8 5 0

0 . 9 0 0

0 . 9 5 0

k = 4 , p = 0 . 1

N

P

0 . 8 5 0

0 . 9 0 0

0 . 9 5 0

1 . 0 0 0

Figure 3 Uncontrolled reliability of an LH*RS file

Figure 3 shows two simulated curves of the reliability P for an
LH*RS file with uncontrolled reliability obtained in this way. The
values of p chosen seem conservatively realistic [S99]. They mean
that a site is unavailable on the average for 3-5 days per month.
Each minimum of P is at the size mi that starts next scaling up of k
for the (k+1)-availability. Each maximum is at the size 2mi when
the (entire) file becomes (k+1)-available and k := k+1. The files
scale to M=1024 buckets, i.e., somewhere between 1÷100 Tbyte.
In both cases, without the scalable availability, P would start
continuously decreasing from M = 8, instead of remaining above
the value close to the reliability of a single bucket, respectively,
above 92% and 82%. For p = 0.15 the successive minima of P
have the tendency to remain about the same, while for p = 0.1
they increase progressively. This tendency would be even stronger
for lower p. One may then delay the increase of the availability
level k with respect to the basic schema, through the reliability
control. The threshold Pmin on P value could be Pmin = 0.9, i.e., the

reliability 1-p of a single bucket. Alternatively, one may choose
larger group size m.

The curve for p = 0.15 shows in contrast that the reliability
evolution is close to optimal. The minimal value of P stays
automatically about 0.85. For even higher p, and same m, the
uncontrolled reliability would not suffice and the curve would
decrease.

Both curves show that, the reliability control is useful for a
multicomputer with sites characterized by p ≤ 0.1. For less
reliable sites with p > 0.15, it appears necessary in practice, as
m < 4 seems the smallest useful choice. Detailed analysis in
[LMR98] confirms this behavior. While not only higher p but also
a larger m may make the reliability control necessary, these
results show nevertheless that for p << 0.1, the uncontrolled
reliability may suffice for a quite large m. For instance for p =
0.01, one may choose m = 16 and for p = 0.005, even m = 32
suffices to keep P ≥ 99% up to M = 32K.

6 VARIANTS
An application may benefit from selected performance tuning.
Specific variants of the basic schema may be designed to address
this concern. First, there are numerous variants of LH* schema
known, their choice impacts the performance of the LH*RS data
file. They differ by the internal structure of buckets, the split
algorithm, the strategy for the load factor control… Some variants
do not even have the coordinator.

There are also issues specific to the parity management. The
implementation choices for GF multiplication, including the data
structures for the tables, impact the calculus speed. For instance,
we can avoid the calculus modulo 2f-1 as in Section 2.3.1, and
thus increase the speed of the method. These additions or
subtractions find an entry in the anti-logarithm table. If one
replicates the anti-logarithm table once above and once below the
table used in contiguous memory location, then the non-modulo
operations suffice. The trade-off is thus to double the table size.
The resulting tables have 4*2f entries. In particular, GF(28)
requires then 1 KB instead of only 512 B.

Furthermore, other algorithms are known for matrix inversion and
to generate matrix G. The internal structure of a parity bucket
obviously influences its access and storage performance. The
bucket recovery calculus can be made parallel between the
participated buckets. The algorithms recovering from specific
catastrophic failures can be added. Finally, the Reed Solomon
Codes used are not the only possibility. Some other codes are
potentially attractive as well, [ABC97], [H&a94], [BFT98].

The storage of parity buckets allows for interesting optimizations.
The basic scheme stores parity buckets at a dedicated servers.
This overhead to the number of servers may itself bother an
application. Next, while the searches in normal mode do not
concern the parity servers, a parity bucket is involved in every
update of a data bucket in the group. The processing load from
data modification at a parity server is hence about m times larger
than at a data server. An application with a large amount of data
modifications could see the parity servers becoming bottlenecks.

The correctness of the parity calculus does not depend on parity
buckets being stored at separate servers. It merely requires that no
server contains two buckets in the same segment. To better
balance the load, one may replace then a single parity bucket with
m buckets storing b/m records each, stored the different pieces at
different servers. The m buckets can form a simple hash subfile.

m = 4, p = 0.15

m = 4, p = 0.1

M

M

P

P

245

This variant equalizes the load from of the data modifications. On
the negative side, it requires more parity servers and sees more
messaging during splits and reconstructions.

To decrease the number of parity servers, one may share a server
between a data and a parity bucket. One simple rule locates the ith
parity bucket of group j with the ith data bucket of group j+1.
Figure 2 may be seen as illustrating this rule. It guarantees that all
buckets in a segment are stored at different server. It can be easily
extended to the above discussed parity subfiles. In this scheme,
every server carries at most one data bucket and zero, or some
parity buckets. The servers carrying data for the first group will
never have parity data. In turn, some servers to serve the data
buckets of the next group to be generated carry only parity
buckets, but not yet data buckets. The “dark size of the Moon” is
obviously increased storage use at each server and processing
load.

Finally, one can have the servers for data of group 0 temporarily
carrying the parity buckets for the last existing group. If the file
expands further, these buckets move to the adequate locations,
being replaced by new last buckets. This simple loop-back
strategy eliminates the additional parity servers entirely. It
minimizes the number of servers for the file to M, required
anyway for the data buckets. Notice the potential interest of this
variant to the users of the current parallel DBMSs. Their currently
0-available hash or even range-partitioning methods, could be
enhanced to the high-availability at no additional hardware cost.

7 RELATED WORK
There were countless high-availability schemes for a single site,
usually 1-available and using some RAID-like striping. A few
schemes appeared for the (static) k > 1 k-availability in this
context, [BM93], [BBM93], [H&a94], and [ABC97] recently.
There were also studies for the distributed environment, e.g.
[SG90] showing the inefficiency of any trivial striping. Deeper
discussion of all these schemes, including SDDS schemes with
mirroring or replication mentioned in the Introduction, is in
[LMR98]. However, besides the LH*RS, the only schemes known
to satisfy all our goals, including the moderate storage overhead
for the high-availability, are the other LH* schemes using the
record grouping mentioned in the Introduction. Their mutual
comparison appears as follows [LS99].

LH*RS may offer substantially lower overhead than LH*SA. The
reason is that the number k of parity records to make a group k-
available is always exactly the theoretical minimum k/m. This is a
remote consequence of the MDS property of RS-codes, [MS97].

LH*RS record recovery cost should typically be lower than that of
LH*g. It may be higher or lower than that of LH*SA. This is due to
more complex parity calculus of LH*RS on the one hand, or to
possibly more messages for LH*SA to explore multiple groups, on
the other hand.

Variants minimizing the number of the file servers through
sharing of data and parity buckets are known only for LH*RS.
Such variant seem at best more difficult to design for the two
other schemes.

If 1-availability suffices, then LH*g has the smallest split cost. Its
record groups are location independent and there is no need to
recalculate the parity data during splits. Generalizing the parity
calculus to RS-codes allows perhaps for a k-available variant of
LH*g retaining that property [LMRS99].

Finally, LH*SA may often recover from l-bucket failure where l >
k which would be catastrophic for LH*RS. The difference may be
quite substantial. For instance, a 2-available LH*SA file may
recover records from any l >> 2 unavailable buckets in the same
group. LH*RS can accommodate at most 3 unavailable buckets
per group in a 2-available file, and only, provided it started to
build the 3-availability. Notice that LH*RS also has good cases,
although the overall balance seems in favor of LH*SA. For
instance, in our example file with record group size m = 4, made
2-available, we can recover from the unavailability of buckets
0,1,4, and 5. This failure is unrecoverable in a 2-available LH*SA
file with the same groups.

8 CONCLUSION
LH*RS schema uses the concept of record grouping and the Reed
Salomon codes to provide scalable, distributed and high-
availability files, badly needed by modern applications. Its
interesting properties, including the scalable availability, near-
optimal access performance and storage use efficiency, should
prove attractive. The schema offers distinct advantages over the
other high-availability schemes known.

Among potential applications, there are modern database systems,
that need continuously larger scalable databases, and for which
the parallel access is already a must [FBW97], [B&al95],
[IBM99]. Many of the existing databases or warehouses grow
very rapidly. The well-known UPS multidatabase passed from 4
to 13 TB between 97 and 98, and many other similar examples are
known. The multimedia servers also start using multicomputers
and the success may make them scaling big [B&al95], [H96]. In
the Web arena, more and more systems maintain TB of data on
large multicomputers. This is the case of the 166–site
multicomputer of Inktomi at Santa Clara, CA, and of the 100-site
of Yahoo in Vienna, VA, which is also built by Inktomi, [I98]. An
implementation of SDDSs is under study for such applications
[G99]. For all these needs, both scalability and 24/7 availability
are critical. The already mentioned mishap of E-Bay is here to
stay as the reminder.

Future work should include the prototype implementation and
deeper analysis of various design issues, as well as of
performance factors discussed in the related sections. This applies
also to the variants. These goals start to be addressed for Wintel
multicomputers, [L00]. The prototype described confirms the
feasibility of the schema for that environment, and seems to
perform as expected in Section 5.

On the other hand, one should port the RS parity schema to other
known 0-availaible SDDS schemes. This should especially
concern the RP*schema. Finally, one should study the other
erasure correcting codes referred to in Section 6.

9 ACKNOWLEDGEMENTS
This research was partly sponsored by a Grant of IBM Almaden
Res. Cntr., Storage Systems Div., and by a Grant of Microsoft
Research. We also thank Mario Blum, Walter Burkhard, Jim
Gray, Mattias Ljungström, Jai Menon, and Tore Risch for helpful
discussions.

APPENDIX A
Let n be the maximal segment size and m the maximal group size.
We recall that the generator matrix G of an RS-code has m rows
and n columns. The left m x m submatrix of G is the identity
matrix I, since we use a systematic RS code. Any square

246

submatrix formed from any m different columns of G is
invertible.

We derive matrix G from a Vandermonde matrix V. V has m
rows and n columns, these we index by the n elements gj ∈ GF(n),
j = 0, ..., n-1. We number the columns and rows from 0 and order
the field elements so that g0 = 0 and g1 = 1. Coefficient vi,j
located in the ith row and the jth column of V is then defined to be
the jth element of the Galois Field raised to the ith power that is:

vi,j = gj
i.

Thus,

 0 1 2 3

2 2 2 2
0 1 2 3

3 3 3 3
0 1 2 3

1 1 1 1

g g g g

g g g g

g g g g

 =

V

L

M O

Row 0 contains only ones since for every j, gj
0 = 1. Since g0 = 0,

the first column contains otherwise zeroes. Since g1 = 1, the 2nd
column contains only 1’s. Vandermonde showed the determinant
of any square submatrix of V consisting of m columns generated
by elements gi to be

det 0.j i
i j

g g
<

= − ≠∏V

It follows that any square m by m submatrix of V is invertible.
This property holds also for the extended V with last column 0, 0,
... 0, 1 that we used to generate our example G in Section 2.3.4.
We now give the details of our transformation of V into G = I|P
where I is the identity matrix. We denote m[i,j], i,j ≥ 0, the
coefficient of matrix m in row i and column j. We denote the jth
row of the current matrix with mj. We use elementary row
transformation [MM92]. These are multiplying a row by a scalar,
exchanging two rows, and adding a multiple of one row to
another. We denote these transformations by mj ⇐ amj, mj ⇔ mi,
mj ⇐ mj + ami, a ∈ GF(2f) respectively. Our algorithm uses up
to m row transformations to transform a column into a unit vector.
The first column is already the first unit vector. The second
column has already the one in position [1,1], and we add the
second row to all the other rows resulting in the second unit vector
for the second column. This operation retains the form of the first
column. We now change the third column into the unit vector.
The diagonal element m[2,2] there is obviously non-zero. We
multiply the third row with the inverse of this element, so that the
coefficient m[2,2] is now 1. Then we generate zeroes in the third
column by adding m[i,2]m2 to all other rows mi. This operation
does not change the first and second column. Continuing in this
manner, we transform m left columns of V into unit vectors, i.e.
the I submatrix. We give pseudo-code, à la [PTVF92], in Figure
4:
 Initialize m = V;
for all columns i = 0, ..., m-1 do

{
(4) mi ⇐ m[i,i]-1mi;
 for all rows j = 0, ..., m-1, but j≠i, do

 mj ⇐ mj − m[j,i] mi;
}

Figure 4 Pseudo-code to transform V into generator matrix
G.

Our inversion algorithm proceeds similarly. We form the m x 2m
matrix H|I from the m x m invertible matrix H. We transform H|I
into I|H-1 using the algorithm in Figure 4, with one exception. As
the diagonal element m[i,i] in line (4) may be zero, we replace
line (4) with :
(4a) if m[i,i] = = 0 do
(4b) {
(4c) find a j > i such that m[j,i] ≠ 0;
(4d) mj ⇔ mi;
(4e) }
(4f) mi ⇐ m[i,i]-1mi;

REFERENCES
[ABC97] Alvarez, G., Burkhard, W., Cristian, F.
Tolerating Multiple-Failures in RAID Architecture with
Optimal Storage and Uniform Declustering. Intl. Symp. On
Comp. Arch., ISCA-97, 1997.

[B&al95] Baru, W., C., & al. DB2 Parallel Edition. IBM
Syst. Journal, 34, 2, 1995. 292-322.

[B99] Bartalos, G. Internet: D-Day at eBay. Yahoo
INDIVIDUAL INVESTOR ONLINE, (Jul 19, 1999).

[B99a] Bertino & al. Indexing Techn. for Advanced
Database Systems. Kluver, 1999.

[BBM93] Blaum, M., Bruck, J., Menon, J. EVENODD:
An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures. IEEE Trans. on Computers, Vol.
C-44, No. 2, pp. 192-202, February 1995.

[BFT98] Blaum, M & al. Array Codes, Handbook of
Coding Theory. V.S. Pless and W.C. Huffman, (ed.),
Elsevier Science B.V., 1998.

[BV98] Breitbart, Y. Vingralek, R. Distributed and
Scalable B+ tree Data Structures. Workshop on Distr. Data
and Struct., 1998, Carleton Scientific (publ.)

[BM93] W. A. Burkhard, J. Menon: Disk Array Storage
System Reliability. 22rd Intl. Symp. on Fault Tolerant
Computing, Toulouse, June 1993, 432-441.

[CACM97] Special Issue on High-Performance
Computing. Comm. Of ACM. (Oct. 1997).

[G99] Gribble, S. Cluster-Based Internet Services with
SDDS. Master Th. UC Berkeley, 1999.

[H96] Haskin, R. Schmuck, F. The Tiger Shark File
System. COMPCON-96, 1996.

[H&a94] Hellerstein, L, Gibson, G., Karp, R., Katz, R.
Patterson, D. Coding Techniques for Handling Failures in
Large Disk Arrays. Algorithmica, 1994, 12, 182-208.

[I98] Inktomi Corporation. http://www.inktomi.com/.

[IBM99] Breaking the Scalability Barrier on Windows NT.
http://www.software.ibm.com/data/pubs/papers/nt-scale/

[K98] Knuth, D. THE ART OF COMPUTER
PROGRAMMING. Vol. 3 Sorting and Searching. 2nd Ed.
Addison-Wesley, 1998, 780.

247

[KLR96] J. Karlson, W. Litwin, T. Risch. LH*LH: A
Scalable High Performance Data Structure for Switched
Multicomputers. Extending Database Technology,
EDBT96, Springer Verlag.

[L80] W. Litwin. Linear Hashing: A New Tool for File and
Table Addressing. Reprint from VLDB80 in Readings in
Databases, M. Stonebraker, 2nd Edition, Morgan
Kaufmann Publishers, 1994.

[L97] Lindberg., R. A Java Implementation of a Highly
Available Scalable and Distributed Data Structure LH*g.
Master Th. LiTH-IDA-Ex-97/65. U. Linkoping, 1997, 62.

[L&al97] Litwin, W., Neimat, M.-A. Levy, G., Ndiaye, S.,
Seck, T. LH*S : a high-availability and high-security
Scalable Distributed Data Structure. IEEE-Res. Issues in
Data Eng. (RIDE-97), 1997.

[L00] Ljungström, M. Implementing LH*RS : A Scalable
Distributed High-Availability Data Structure. Master Th.
(Feb. 2000), CS Dep., U. Linkoping, Suede.

[LMR98] Litwin, W., Menon J., Risch, T..LH* with
Scalable Availability. IBM Almaden Res. Rep. RJ 10121
(91937), (May 1998), (subm.).

[LMRS99] Litwin, W., Menon, J.Risch, T., Schwarz, Th.
Design Issues For Scalable Availability LH* Schemes with
Record Grouping. DIMACS Workshop on Distributed Data
and Structures. Carleton Scientific, 1999.

[LNS93] Litwin, W., Neimat, M.-A., Schneider, D. LH* :
Linear Hashing for Distributed Files. ACM-SIGMOD Intl.
Conf. on Management of Data, 1993.

[LNS96] Litwin, W., Neimat, M.-A., Schneider, D. LH* -
A Scalable Distributed Data Structure. ACM Trans. on
Database Systems, Dec. 1996.

[LN96] W. Litwin, M.-A. Neimat: “High-Availability LH*
Schemes with Mirroring”, Intl. Conf. on Coop. Inf.
Systems, (COOPIS). IEEE Press 1996.

[LR97] Litwin W., Risch, T. LH*g: a High-Availability
Scalable Distributed Data Structure through Record
Grouping. Res. Rep. CERIA, U. Dauphine & U. Linkoping
(May. 1997).

[LS99] Litwin, W., Schwarz, Th. LH*RS: A High-
Availability Scalable Distributed Data Structure using Reed
Solomon Codes. Res. Rep. CERIA, U. Dauphine (Sept.
1999).

[M97] Gates, B. The Microsoft Scalability Day
http://204.203.124.10/backoffice/scalability/coverage.htm

[MM92] Marcus, M., Minc, H. A Survey of Matrix Theory
and Matrix Inequalities, Dover, New York, 1992.

[P98] President’s Inf. Techn. Advisory Comm. Interim
Rep. To the Pres. Of the United States. August 1998.

[MS97] MacWilliams, F. J., Sloane, N. J. A. The Theory
of Error Correcting Codes, Elsevier / North Holland,
Amsterdam, 1997.

[PTVF92] Press, W. H., Teukolsky, S. A., Vetterling W. T.,
Flannery, B. P. Numerical Recipes in C: The Art of
Scientific Computation, 2nd ed., Cambridge University
Press, 1992.

[R98] Ramakrishnan, K. Database Management Systems.
McGraw Hill, 1998.

[S99] Smith, D. The Cost of Lost Data. Res. Rep. School of
Business and Management, Pepperdine University, 1999.

[SDDS] SDDS-bibliography.
http://ceria.dauphine.fr/SDDS-bibliograhie.html

[SG90] M. Stonebraker, G. Schloss: “Distributed RAID –
A New Multiple Copy Algorithm”, 6th Intl. IEEE Conf. on
Data Engineering, 1990, IEEE Press, pp. 430-437.

[VBW94] Vingralek R., Breitbart Y., G. Weikum.
Distributed File Organization with Scalable
Cost/Performance. ACM-SIGMOD Intl. Conf. on
Management of Data, 1994, 253-264.

[VBW98] Vingralek R., Breitbart Y., Weikum G.
SNOWBALL: Scalable Storage on Networks of
Workstations with Balanced Load. Distr. and Par.
Databases, 6, 2, 1998.

248

