Low Cost Comparisons of File Copies

*

Thomas Schwarz
Robert W. Bowdidge
Walter A. Burkhard

Computer Science and Engineering
University of California at San Diego

Abstract

The problem of maintaining consistency of
replicas of large files has been addressed by
Barbara, Feijoo and Garcia-Molina [1], Bar-
bara and Lipton [2], Fuchs, Wu and Abra-
ham [5] and Metzner [6]. Our model is es-
sentially identical to that previously assumed.
We present a scheme that provides all capa-
bilities previously obtained as well as being
able to detect and identify missing as well as
extraneous pages. Qur solution is an adap-
tation of Metzner’s approach. We assume
the existence of a signature function for in-
dividual pages. A supersignature is obtained
as a power series in a primitive root within
the Galows field with 2" elements. The co-
efficients are the signatures of the individual
pages. This scheme enables us to detect er-
rors such as missing, altered or incorrectly
placed pages with very high probability and to
find an error diagnosis if discrepancies have
been detected.

The problem solved in this paper is typ-
ified by the following situation. Consider a
large database, replicas of which are situated

*This work was supported by the University of
California MICRO program as well as the NCR Cor-
poration, Dayton, OH

at several sites. Each site keeps its own log file
of updates and in order to insure consistency,
these log files are compared periodically. The
physical organization of the log file consists
of pages.

Our model is the one usually adopted for
this variety of problem. A file is organized
as a sequence of pages and complete copies
of the file are maintained at distinct sites
throughout the network. We assume that few
discrepancies occur and note that our scheme
will not accommodate catastrophic failures.
The cost of sending information through the
network is high compared to the cost of cal-
culations at an individual site. The order of
pages is important and there might be miss-
ing pages besides faulty ones.

As usual, our solution avoids the costly and
tedious task of bitwise comparison between
the pages stored at different sites. Rather,
we compare “signatures” of the individual
pages by means of a supersignature calculated
from the individual page signature. This al-
lows conclusions that two copies are identical
only with a previously chosen arbitrarily high
probability. The cost of higher accuracy will
be additional bits within the signature.

Our scheme is based on the calculation of
the supersignature. We interpret page sig-

natures as elements of the Galois field Z%
of 2" elements, but we disallow 0 as a value
for a page signature. (We later propose vari-
ants that use more common data structures.)
Let g be a fixed primitive root of Z7, i.e. a
generator of the multiplicative group of Z7.
The supersignature is then calculated as the
weighted sum of the page signatures with the
powers of g.

Definition 1 Let p1,...,p, denote the page
signatures. We define a supersignature H by

n

-pn) = Zgy * Py

v=1

H(pl,..

More generally, we define the supersignature
of pry...,pm to be

m
Zgy * Py -
v=k

Note that the supersignature of a (contigu-
ous) set of pages in a file does not only depend
on the pages but also on the page number,
that is, the placement of the pages in the file.

We have to show this supersignature is ca-
pable of detecting the existence of altered,
missing, extraneous and misplaced pages and
we present an algorithm that given a small
number of discrepancies of the replicas of the
file finds a proper error diagnosis.

Effectiveness

There are several considerations regarding
the efficiency of a signature. The computa-
tion of the signature must be feasible. Er-
ror detection is another measure of efficiency.
We assume that the supersignature is to be
a good hash function on the set of all pages,
that is, the probability of attaining any par-
ticular value is identical for all possible val-
ues. In this sense it can be shown that H is
good if the page signature is good.

We can also give probabilities that one er-
ror of a particular kind can be detected. The
probability that one altered page is detected

is equal to the probability that a page signa-
ture does not detect an error, which is 1/2". A
single missing or extraneous page will be de-
tected because the total number of pages does
not agree. Even without this information the
supersignatures will not agree if the page sig-
nature of the missing page is not zero (which
can happen only with probability 1/2"”. An
inversion (that is a case where two pages have
exchanged places in the file) will be noticed
with probability &~ 1/2"7!. A jump, where
one page shows up later in one copy than
in the other, will be detected with the same
probability. (In all this we made the silent
assumption that page signatures are indepen-
dently distributed.)

Sometimes, page signatures are selected be-
cause of their error detecting probabilities.
This however tends to generate good hash
functions. A simple counting argument shows
that error detection is impossible for supersig-
natures (at least if the number of pages in a
file is not limited.)

Some Properties

Subsupersignatures, that is, supersigna-
tures of a contiguous subset of pages in a
file, are dependent on the placement in the
file. That is, exactly the same set of pages
will yield different supersignatures according
to the pagenumber the first page of this sub-
set has. However, one will be the ¢* multiple
of the other, where k is the difference of the
respective page numbers.

We also have additivity. If we know the
supersignature of a (contiguous) set of pages
and the supersignature of the first (or sec-
ond) half of this set then a simple subtrac-
tion will yield the supersignature of the other
half. This property will cut the amount of
bits transmitted during the diagnosis of a dis-
crepancy by half.

A File Comparison Algorithm

We can now use a variant of Metzner’s
strategy to compare two files.

In overview, Site I (the initiator site) re-
quests the number of pages in Site’s II copy of
the file as well as the supersignature and then
calculates its own data from its local copy. If
the data do not agree, the file is split in halves
and each copy’s data are compared. But not
only are these parts of the file compared, but
it is also tested whether the lacking consis-
tency is due to misalignment caused by lack-
ing pages in either copy of the file. This
is done by conceptually shifting the parts of
Site’s I copy to the left and to the right.

We will work with pairs (H, n) consisting of
a supersignature of a contiguous set of pages
and the number of pages. Two such pairs
are the same exactly when both components
agree. In the course of error detection our in-
creased knowledge of both file copies in terms
of a breaking up of the supersignatures in
those covering smaller numbers of pages will
be represented by a sequence of those pairs:

(D, iy, nly)

the meaning of which is that the first n; pages
of the copy at site i have supersignature HY),
and so on. We will have to define two opera-
tions on pairs: Leftshift and Rightshift. The
first one will correspond to conceptually de-
stroying a page to the left of the area of pages
in question thus simulating a missing page in
the other site’s copy or a superfluous one in
our copy whereas the other operation corre-
spond to inserting a dummy page to the left
thus simulating a missing page in our copy or
a superfluous one in the other copy. These
operations are not always defined if the set
of pages covered does include the first or the
last page.

Assume that (H',n’) covers the pages
{Pm;Pm+1; - - -Pm+n }- Conceptually destroy-
ing page p; now results in having to re-
place H’ by the supersignature of the pages
{pm+1: s 7pm+napm+n+1}' This can be cal-
culated by HD®W = ¢=1H' — ¢™h(py) +
9" " h(Pmtn). A similar formula can easily

be derived for the Rightshift.

The scheme proper now starts out by Site
I, which is the calculation intensive site, re-
questing the number of pages and the super-

signature of site’s II copy of the file and com-
paring it with its own. Also, the number of
errors allowed is set to F', a previously agreed
upon number.

If in general we have reached a state in
which we want to compare two sequences of
pairs

((ngl)a nz(/l))l/:l,...,k)

we compare the corresponding pairs sequen-
tially in the manner described below. If dur-
ing a comparison of a pair (), n(") with
(H® n(2)) it turns out that n(*) = 0 the cor-
responding set of pages at the other side is
labelled superfluous. If n(1) = 1 = n(?) and
the signatures are not the same these pages
are labelled as different. Note that we actu-
ally are not diagnosing inversions as such, this
is left to the error recovery routines. In these
cases, the pairs are eliminated from further
consideration. In all other cases, inequality
of pairs is diagnosed. But this is first tried
to be resolved by Left- and Rightshifting of
the pair corresponding to site I by up to F
(the number of errors allowed) shifts in ei-
ther direction. When through this maneu-
ver or straight from the beginning equality
of pairs has been found the part of both se-
quences that is to the left of the pair in ques-
tion is separated from the rest and the error
allowance F' decreased by the number of shifts
necessary. In the same move the equal pairs
are eliminated from further consideration as
they are deemed to be equal. If equality can-
not be achieved, the set of pages in question
is divided in half in such a way that the high-
est power of 2 strictly smaller than n(2) is the
number of pages in the first half. Site I has
to request the corresponding supersignature
from site Il and initiate the appropriate cal-
culation for its part. The supersignature of
the other half can be calculated from the old
and the just obtained one. For every splitting
of a pair, the error allowance F' is decreased
by one, as we just proved the existence of one
more mistake, After each comparison, we end
up with a set of sequences with a total of at
most F' pairs that are dealt with recursively.
The algorithm stops when F' becomes nega-
tive, i.e. in failure, or when there is nothing

((Hl(/Z)v nz(/Z))l/:l,...,k)

left to be considered.

Example

Assume, that site I contains the file with
page signatures

Site I I,m,n,o,p,q,r,s,t,u,v,w,x,y,z

and that site II contains the file with page
signatures

Site II: 1, m,0,p,q,7,s,t,u,v,w,z,y,z

Note that the page with signature n at site 11
is missing. In the initial step, site I notices
that the number of pages differ. It neverthe-
less requests

Hy(l,m,n,0,p,q,7,s,t,u,v,w,z,y,z).
Then site I asks for and compares
Hy(l,m,n,0,p,q,r,s)# Ha(l,m,0,p,q,7,5,t)
and calculates Hs and compares

Hy(u,v,w,2,y,2) = Hao(u,v,w,2,y, z)

because only values of H of the same number
of arguments Should be compared. At this
point site I knows that there is at least one
error in

I: liminﬁoﬁp’qirﬁsﬁt II: lJmJO’p’quisit

(which incidentally also follows from the fact
that the number of pages do not agree.) In
the next round site I compares

Hy(l,m,n,0) # Hy(l,m,0,p)

and calculates H1(q, r, s,t) which is compared
to Ha(p,q,r,s) and Ha(g,r,s,t). Site I finds
that file (q,r,s,t) at I is identical to (q,r,s,t) at
site IT and hence site I only has to compare
files

I. I,m,n,o,p andlIl:l,m,o,p
After comparing

Hy(l,m) = Ha(l, m);

Hy(n,o0) # Ha(o,p);
Hy(o,p) = Ha(o,p)

site I can now conclude that its third page is
not to be found in the second site’s record.

Variations of the Algorithm

The algorithm is biased towards the as-
sumption that errors are due to missing
pages. For a small number of actual errors
this will not pose a problem, the algorithm
will give the correct error diagnosis with high
probability. If however one tries to use this
algorithm under more bizarre circumstances,
obvious improvements can be made.

In rare cases the algorithm might fail to
find the right diagnosis because supersigna-
tures of subsets of pages coincide even though
the subsets do not and the algorithm is led
astray. It will never make a wrong diagno-
sis unless several page signatures of different
pages agree. If several explanations exist, it
might however not give the most probable
one.

To guarantee a diagnosis the following
modifications are made. We impose an upper
error bound £ for the number of altered pages
and another, F for the number of missing or
superfluous pages. In this context, it should
be noted that a jump or an inversion counts
as one missing and one superfluous page. The
number of shift operations is then restricted
to F'. If the algorithm fails, rerun with in-
creasing values of FF = 1,... will lead to a
correct answer.

In general, the algorithm will be able to
detect a greater number of missing pages than
the amount of F', even if these missing pages
are contiguous.

Alternative Signature Spaces

In the preceeding discussion we equipped
the signature space, i.e. the space of all pos-
sible signatures, with the algebraic structure
of a Galois field. (This is the only algebraic
structure satisfying our needs which can be
defined on a set of this size.) To make our
scheme computationally accessible, we have
to multiply powers of g. This task has been
solved by the dual base algorithm due to El-
wyn Berlekamp (v. [3, 7]).

In practice, other implementations of arith-
metic on a slightly altered signature space

might be preferable. Though the space of
all bit strings of a given length is the best
signature space for generation purposes, the
implementation of Berlekamp’s algorithm or
any other implementation of multiplication in
a Galois field might be considered tedious.

Our results remain valid if the signature
space is the set of integers modulo a given
prime (usually the largest prime smaller than
the largest unsigned integer directly repre-
sentable on the machine) or a cartesian prod-
uct of the integers modulo different primes.
The arithmetic operations in the latter case
are defined componentwise. The generating
element is a vector consisting of primitive el-
ements modulo the i** prime in the #** co-
Presumably, page signatures are
generated as a string of bits. If we interpret
these strings as unsigned integers and take
the remainder modulo these primes we can
represent 1Y p; different signatures (where
p; = 2¥ — a; are the primes and w denotes
the word length.) This scheme is known
as Chinese Remaindering. The values with
it component smaller than a; will be attained
with double the probability than the larger
ones. This is not a big disadvantage, as these
values will only be attained with a very small
probability and as to achieve the same guar-
anteed bounds of the original scheme we have
to make signatures N bits longer. Alterna-
tively, we can alter the page signature gen-
eration scheme. The big advantage of this
alternation lies in the use of commonly used
operations that are optimized in any machine.

ordinate.

Implementation

A version of this algorithm has been coded
and tested ([4]). The signature space con-
sisted of vectors of dimension five the coordi-
nates of which were remainders modulo the
five largest primes smaller than the maximal
representable unsigned integer. To test the
algorithm a signature file was randomly gen-
erated and transmission of the original file to
another site simulated by capturing transmis-
sion errors by its effects on the signature file.
Four types of errors were considered: Altered

pages (32), lost pages (), jumped pages (2)

and doubled pages (%), where the numbers
are the probabilities for this kind of error to
occur. To measure the costs the two resulting
signature files were subjected to our compar-
ison algorithm and the number of multiplica-
tion and remote requests recorded with the
total number of errors as a parameter. (See
figures 1 and 2.)

We also compare our algorithm with the
naive one, which transfers the file and com-
pares it bit by bit, measuring the time re-
quired by each one. We present both experi-
mental and analytical results for the two com-
parison schemes. These are typical of compu-
tation environments including Sun 3/50 sites
connected with 1 Mb/sec networking. Our
simulation times were obtained using Sun

3/50.

Assuming a file size of 10000 pages of
1K byte each, the naive approach causes
81920000 bits to be sent. Our algorithm will
cause log,(10*) remote requests for supersig-
natures in the presence of one error and hence
at most 1+ E'log,(10%) for E errors resulting
in network traffic of 161392 bits assuming 100
errors and an integer size of 2 bytes or around
500 times less traffic.

The performance comparison is repre-
sented in the table below. The entries in the
comparison row measure the time required to
do the necessary computatinal comparisons.
For the naive algorithm, the result depends
on the file size and is otherwise constant. For
our algorithm the result is the average for 20
experiments each consisting of 200 samples
where the number of errors was fixed in each
experiment. The average comparison time in-
creased from 21 to 41 seconds as we varied the
number of errors from 1 to 20.

The entries in the transmission row mea-
sure the time required to transmit the nec-
essary information. In the naive algorithm
the file itself is transmitted while in our al-
gorithm an inconsequential amount of data is
transmitted.

Our alg. Naive alg.
comparisons 29 sec 54 sec
transmission | =& 0 sec 80 sec

These times assume that it is not neces-
sary to compute the signature as they can be
maintained incrementally. In any case, the
time to compute the supersignature would be
approximately the time required by the byte—
by—byte comparison.

Appendix:
Mathematical Results

In this section, we assume that the signa-
tures are represented as elements of Z," | but
that the value 0 is not a permissible signature.

Lemma 1 Assume that p, = pyy. where
Dk - Pl Pktes - Dite € P (the set of page
signatures and ¢ = constant.
Then
9 - H((pr,-- - p1)) = H ((Pre,- - Dige)) -
Proof:
H ((ﬁk+cﬂ s aﬁH—c)) =
I+
> ¢ h(p) =
v=k+c
!
D9 h(puge) =
v==k
!
g°- Y g"h(py) =
v==k
ch((plmel)) u

The following observation shows that we can
calculate the supersignature of the first (resp.
last) half of a set of contiguous pages from
the other half’s and the whole set’s supersig-
natures.

Lemma 2
H((pl:pH—l; . ;Pk)) =

H((plapH—l; .. ~=Pm—1))+H((Pm;pm+1a ..

Lemma 3 An inversion will be detected with
probability approrimately 277,

Proof: We calculate the probability that an
inversion (i.e. an exchange) of two pages will
not be noticed by H. Let the first page have
signature s; and page number i at the first
site and let the second page have signature
sy and page number j at the first site and
assume that these page numbers are reversed
at the second site. Then H will not detect an
inversion iff

g'si+g'sa=g¢s1+7's2.
This is equivalent to

(' — g’)s1 = (9" — ¢')s,
ie., iff ' '

sy =sqor gt =g .
The later condition is equivalent to i being
congruent modulo 2” — 1 to j. Therefore the
probability that H will not detect an inver-

sion is only slightly higher than 277,]

Lemma 4 A jump will be detected with prob-
abulity 27",

Proof: Consider:

P1,P2,-.-Pk—-1,Pk,Pk+1;---Pj,---Pm
at site I and
P1,P2---Pk—1,Pk+1;---Pj, PksPj+1, - - -Pm
Note that page pr, "jumped”. Then
Hy—Hyp =

j—1
g h(pe)+g | D 0" hipw)
n=k+1

+9’ h(p;) — g"h(pj)—

ji—1
> ¢" " h(py) — ¢ h(pr)
p=k+1

-1 3 | +

p=k+1

(9" — ¢’)(h(pr) + h(p;))

The probability that H; equals Hjy is there-
- Pr)) fore 277]

References

(1]

D. Barbara, B. Feijoo and H. Garcia-
Molina: Exploiting Symmetries for Low-
Cost Comparison of File Copies; Proc.
International Conference on Distributed
Computing Systems, San Jose, June 1988

Daniel Barbara and Richard J. Lipton: A
class of Randomized Strategies for Low-
Cost Comparison of File Copies; Techni-
cal Report Princeton CS - TR 176-88 ;
9/88

Elwyn R. Berlekamp: Algebraic Cod-
ing Theory; McGraw-Hill Book Company
New York 1968

R. W. Bowdidge, W. A. Burkhard, T. J.
E. Schwarz, Technical Report UCSD | in
statu nascendi

W. K. Fuchs;, K. Wu and J. Abra-
ham: Low-Cost Comparison and Diagno-
sis of Large Remotely Located Files; Fifth
Symposium on Reliability in Distributed
Software and Database Systems, January

1986, 67-73

J. Metzner: A Parity Structure for Large
Remotely Located Data Files; [EFEE
Transactions on Computers Vol C - 32,

No. 8, 1983

Robert J. McEliece: Finite Fields
for Computer Scientists and Engineers;

Kluwer Academic Publishers ; Boston,
Dordrecht, Lancaster 1987

