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Abstract

Large archival storage systems experience long periods
of idleness broken up by rare data accesses. In such sys-
tems, disks may remain powered off for long periods of
time. These systems can lose data for a variety of reasons,
including failures at both the device level and the block
level. To deal with these failures, we must detect them early
enough to be able to use the redundancy built into the stor-
age system. We propose a process called “disk scrubbing”
in a system in which drives are periodically accessed to de-
tect drive failure. By scrubbing all of the data stored on all
of the disks, we can detect block failures and compensate
for them by rebuilding the affected blocks. Our research
shows how the scheduling of disk scrubbing affects over-
all system reliability, and that “opportunistic” scrubbing,
in which the system scrubs disks only when they are pow-
ered on for other reasons, performs very well without the
need to power on disks solely to check them.

1. Introduction

As disks outpace tapes in capacity growth, large scale
storage systems based on disks are becoming increasingly
attractive for archival storage systems. Such systems will
encompass a very large number of disks and store petabytes
of data (1015 bytes). Because the disks store archival data,
they will remain powered off between accesses, conserv-
ing power and extending disk lifetime. Colarelli and Grun-
wald [2] called such a system a Massive Array of mainly
Idle Disks (MAID).

In a large system encompassing thousands or even tens
of thousands of active disks, disk failure will become fre-

† Supported in part by an SCU-internal IBM research grant.
‡ Supported in part by Lawrence Livermore National Laboratory, Los

Alamos National Laboratory, and Sandia National Laboratory under
contract B520714.

quent, necessitating redundant data storage. For instance,
we can mirror disks or mirror blocks of data, or even use
higher degrees of replication. For better storage efficiency,
we collect data into large reliability blocks, and group m
of these large reliability blocks together in a redundancy
group to which we add k parity blocks. We store all relia-
bility blocks in a redundancy group on different disks. We
calculate the parity blocks with an erasure correcting code.
The data blocks in a redundancy group can be recovered if
we can access m out of the n � m�k blocks making up the
redundancy group, making our system k-available.

Our redundancy scheme implies that the availability of
data depends on the availability of data in another block.
The extreme scenario is one where we try to access data,
discover that the disk containing the block has failed or that
a sector in the block can no longer be read, access the other
blocks in the redundancy group, and then find that enough
of them have failed so that we are no longer able to recon-
struct the data, which is now lost. In this scenario, the re-
construction unmasks failures elsewhere in the system.

To maintain high reliability, we must detect these
masked failures early. Not only do we have to access
disks periodically to test whether the device has failed,
but we also have to periodically verify all of the data on
it [6, 7], an operation called “scrubbing.” By merely read-
ing the data, we verify that we can access them. Since we
are already reading the data, we should also verify its ac-
curacy using signatures—small bit strings calculated from
a block of data. We can use signatures to verify the co-
herence between mirrored copies of blocks or between
client data and generalized parity data blocks. Sig-
natures can also detect corrupted data blocks with a
tiny probability of error. Our work investigates the im-
pact of disk scrubbing through analysis and simula-
tion.



2. Disk Failures

Storage systems must deal with defects and failures in
rotating magnetic media. We can distinguish three principal
failure modes that affect disks: block failures, also known
as media failures; device failures; and data corruption or
unnoticed read error.

On a modern disk drive, each block consisting of one or
more 512 B sectors contains error correcting code (ECC)
information that is used to correct errors during a read. If
there are multiple errors within a block, the ECC can ei-
ther successfully correct them, flag the read as unsuccess-
ful, or in the worst case, mis-correct them. The latter is an
instance of data corruption, which fortunately is extremely
rare. If the ECC is unable to correct the error, a modern disk
retries the read several times. If a retry is successful, the er-
ror is considered a soft error; otherwise, the error is hard.
Failures to read data may reflect physical damage to the
disk or result from faulty disk operations. For example if a
disk suffers a significant physical shock during a write op-
eration, the head might swing off the track and thus destroy
data in a number of sectors adjacent to the one being writ-
ten.

2.1. Block Failures

Many block defects are the result of imperfections in the
machining of the disk substrate, non-uniformity in the mag-
netic coating and contaminants within the head disk assem-
bly. These manufacturing defects cause repeatable hard er-
rors detected during read operations. Disk drive manufac-
turers attempt to detect and compensate for these defects
during a manufacturing process called self-scan. Worst-
case data patterns are written and read across all surfaces
of the disk drive to form a map of known defects called the
P-list. After the defect map is created (during self-scan),
the drive is then formatted in a way that eliminates each
defect from the set of logical blocks presented to the user.
These manufacturing defects are said to be “mapped-out”
and should not affect the function of the drive.

Over the lifetime of a disk, additional defects can be en-
countered. Additional spare sectors are reserved at the end
of each track or cylinder for these grown defects. A spe-
cial grown defect list, or G-List, maps the grown defects
and complements the P-List. In normal operation, the user
should rarely encounter repeatable errors. An increase in
repeatable errors, and subsequent grown defects in the G-
List, can indicate a systemic problem in the heads, media,
servo or recording channel. Self Monitoring Analysis and
Reporting Technology (SMART) [13] allows users to mon-
itor these error rates.

Note that a drive only detects errors after reading the af-
fected blocks; a latent error might never be detected on an

unread block. Therefore, scrubbing and subsequent recon-
struction of failed blocks is necessary to ensure long-term
data viability.

2.2. Disk Failure Rates

Some block failures are correlated. For example, if a
particle left over from the manufacturing process remains
within the disk drive, then this particle will be periodically
caught between a head and a surface, scratching the sur-
face and damaging the head [3]. The user would observe a
burst of hard read failures, followed eventually by the fail-
ure of the drive. However, most block failures are not re-
lated, so we can model block failures with a constant fail-
ure rate λbf .

Device failure rates are specified by disk drive manu-
facturers as MTBF values. The actual observed values de-
pend in practice heavily on operating conditions that are
frequently worse than the manufacturers’ implicit assump-
tions. Block failure rates are published as failures per num-
ber of bits read. A typical value of 1 in 1014 bits for a com-
modity ATA drive means that if we access data under nor-
mal circumstances at a rate of 10 TB per year, we should
expect one uncorrectable error per year.

Block errors may occur even if we do not access the
disk. Lack of measurements, lack of openness, and most
importantly, lack of a tested failure model make conjec-
tures on how to translate the standard errors per bits rate
into a failure rate per year hazardous. Based on interviews
with data storage professionals, we propose the following
model:

We assume that for server drives, about 1/3 of all field
returns are due to hard errors. RAID system users, who buy
90% of the server disks, do not return drives with hard er-
rors. Thus, 10% of the disks sold account for one third of
hard errors reported. Therefore, the mean-time-to-block-
failure is 3/10 times the MTBF of all disk failures and the
mean-time-to-disk-failure is 3/2 of the MTBF. If a drive
is rated at 1 million hours, then the mean-time-to-block-
failure is 3� 105 hours and the mean-time-to-disk-failure
is 1�5�106 hours. Thus, we propose that block failure rates
are about five times higher than disk failure rates.

3. System Overview

We investigate the reliability of a very large archival
storage system that uses disks. We further assume that disks
are powered down when they are not serving requests, as in
a MAID [2]. Disk drives are not built for high reliability [1]
and any storage system containing many disks needs to de-
tect failures actively. In a MAID, this may involve power-
ing on disks that have been idle for a long time.



3.1. Redundant Data Storage

In order to protect against data loss, we incorporate two
different defensive strategies. First, as in any large storage
system, we store data redundantly. The simplest method is
to store several copies of data, but this also multiplies the
physical storage needs. An archival storage system would
most likely employ a scheme based on error correcting
codes (ECCs), in which we group m data items with an ad-
ditional k parity items in a redundancy group. Using the
ECC, we can access all data stored in a redundancy group
when only m out of the n � m� k items are available. The
items can be complete disks or they can be subregions of
disks. We call the latter redundancy blocks or r-blocks. The
r-blocks in a redundancy group are placed on different disks
so that a single device failure only affects one r-block per
redundancy group. An r-block usually consists of many in-
dividual disk blocks. Previous research [15] discusses the
advantages and disadvantages of using complete disks or
smaller r-blocks for reliability and storage system opera-
tions.

As an example, we can imagine a MAID with a steady
write load. As data arrives for storage, we break it into r-
blocks of fixed size, perhaps a few megabytes, and add par-
ity r-blocks to form redundancy groups. In such a system,
only a few of the thousands of disks in the storage sys-
tem are powered on at any time because of read operations.
We store the r-blocks on these active disks. In order to dis-
tribute load, we want to spread newly formed redundancy
groups over all the disks in the system, but new read re-
quests will presumably change the set of active disks.

3.2. Disk Scrubbing

We propose the use of disk scrubbing to detect failed
disk sectors. The most basic version of disk scrubbing just
reads all the data in a certain region, a scrubbing block or
s-block. As with r-blocks, s-blocks contain many individ-
ual disk blocks, and could even encompass an entire disk.

If a disk sector suffers a failure, the internal ECC on the
disk sector flags the sector as unreadable, but only when
the sector is read. Whether we detect a sector failure dur-
ing a normal read operation or during scrubbing, we use the
redundancy in the storage system to recover the data and ei-
ther rewrite the recovered contents in place or elsewhere if
the disk sector suffered physical damage. If the failure is
found while we are trying to repair another drive or sec-
tor failure, we might already have lost data.

3.3. Content Verification through Signatures

Disk scrubbing verifies that all the sectors in an s-block
are accessible by simply reading them. We can also use a

signature scheme, explained in more detail below, to ver-
ify the contents, protecting against rare instances of data
corruption on the storage device as well as software fail-
ures. The most important instance of such failures are client
data / parity data incoherence. In our system, we might on
rare occasions update a block. The signature scheme de-
tects whether the update changed all the parity blocks or
mirrored blocks in the system. If not, then the mechanism
to restore data will no longer work. If s-blocks encompass
one or more r-blocks, then we can use our signature scheme
to check whether parity blocks accurately reflect the con-
tents of s-blocks.

3.4. Signatures for Disk Scrubbing

In our more elaborate scheme, we maintain an f -bit sig-
nature of the contents of an s-block in a data base. The sig-
nature scheme has the following characteristics:

1. The probability that two random s-blocks have the
same signature is (or close to) the optimal value 2� f .

2. If an s-block changes slightly then the signature de-
tects this change, i. e., the signature changes.

3. If we change a small portion of an s-block, then we
can calculate the new signature from the old one and
the change.

4. We can calculate the signature of a block composed of
sub-blocks from the signature of the sub-block.

5. We can calculate the signature of an r-block contain-
ing parity data from the signatures of the data r-blocks
in the same redundancy group.

Many signature schemes fulfill properties 1 and 2. Prop-
erty 3 is related to the notion of composable hash func-
tions [14]. We use the “algebraic signature” proposed by
Litwin and Schwarz [8, 9] that has all the properties. How-
ever, according to Schwarz [11], the “algebraic signature”
only has property 5 for Reed-Solomon codes [10], a convo-
lutional array code, or a code using XOR to calculate parity
as in Hellerstein, et al. [4].

3.5. Disk Scrubbing Operations

We periodically scrub an s-block by reading it into the
drive buffer. A modified device driver allows each disk
block of an s-block to be read directly into the buffer of the
disk and validated based on the internal ECC. If the drive
cannot validate a disk block, then we use redundant storage
to recover the data and store it again on the device. Option-
ally, during some scrubs, we read all the data in an s-block,
recalculate its signature, and compare the result with the
signature maintained as metadata. This step validates the
contents of the s-block, whereas disk scrubbing only in-
sures that we can read the individual disk blocks that com-
prise an s-block.
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Figure 1. Markov Model for random scrub-
bing, constant rate block failures.

4. Modeling the Effect of Disk Scrubbing

We now investigate the impact of disk scrubbing on the
probability that a disk contains one or more failed blocks.
We model block failure as a Poisson process, where a disk
block goes bad at a rate of λbf , 0 � λbf � 1. We distinguish
between three scrubbing disciplines. In random scrubbing,
we scrub an s-block at random times, though with a fixed
mean time between scrubs. Deterministic scrubbing of an
s-block happens at fixed time intervals. Finally, opportunis-
tic scrubbing piggy-backs as much as possible on other disk
operations to avoid additional power on cycles.

4.1. Random Scrubbing

We model random scrubbing as a simple Markov model
with two different states and the transitions depicted in Fig-
ure 1. State 0 models the situation without block failures,
and State 1 depicts the state where the scrubbing block con-
tains a failed block. p is the probability that the system is
in State 0; and τ is the mean scrubbing rate. The system
is in balance if the flow into State 0 equals the flow out of
it, when λbf � p � τ � �1� p�. The equilibrium condition is
equivalent to

p �
τ�λbf

1� τ�λbf
�

The probability that the disk has a bad block when we
access it at random t is simply Pfailure � 1��1� τ�λbf �.
As expected, this probability depends only on the ratio of
scrubbing rate to failure rate, not on their absolute values.
If the size of the scrubbing blocks is doubled, the scrub-
bing rate τ should also be doubled to keep the ratio con-
stant. In this way, the probability of a block failure does
not change, making the effect of scrubbing independent of
the size of the scrubbing area.

4.2. Deterministic Scrubbing

We assume that we scrub parts of the disk regularly.
We call the time between scrubbing operations T . Assume
that the scrubbing area consists of N blocks and that each
block suffers bit-rot or is corrupted at a constant rate λ block�
Then the probability F�t� that at least one block is cor-
rupted before time t is F�t� � 1� exp��N � λblock � t� �

1� exp��λbf � t�, where we set λbf � N � λblock to be the
scrubbing area block failure rate.

We can now compute the probability Pfailure that, at ran-
dom time t, we find that the area contains at least one failed
block, despite scrubbing with interval T . Since our random
time t needs to fall into one of the scrubbing intervals, we
can assume that it falls with uniform probability in the in-
terval �0�T �. The probability density of t is then T �1dt. The
chance of suffering a failure at time t is given by F�t�. To
compare with our previous result, we write τ � T �1. Thus

Pfailure �

� T

0
�1� exp��λbf � t�T

�1dt

� 1� �τ�λbf ��1� exp��λbf�τ��

Again, as has to be the case, the probability only depends
on the ratio τ�λbf � As Figure 2 shows, deterministic scrub-
bing always outperforms random scrubbing. In Figure 2,
we choose τ�λbf to be between 0.5 and 100 and give the
probability of finding a block in error at a random time t.
As Figure 2 shows, most of the benefits of scrubbing accrue
at rather low ratios. Since block failure rates are measured
at least in hundreds of thousands of hours, it appears that
scrubbing, while important, need be done only rarely. How-
ever, as we will see, the system mean time between data
loss can be very sensitive to small changes in the probabil-
ity of reconstruction so that aggressive scrubbing is needed
for optimal reliability.
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Figure 2. Failure probability for a single
scrubbing region for fixed and random
scrubbing intervals.

4.3. Opportunistic Scrubbing

Since disk power-ups negatively affect disk drives (un-
less of course the disk has not been powered up for a long
time), we want to avoid the mandatory power-ups of a
deterministic scrub. For this reason, we explored a third
scrubbing strategy, opportunistic scrubbing. In this strat-
egy, we set a scrub interval target, and maintain the time
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Figure 3. Failure probability for a single
scrubbing region under opportunistic scrub-
bing. The average scrub interval is 104 hours
and the block MTBF is 105 hours.

since the last scrub of the disk portion. When the disk is
accessed, the portions of the disk for which the scrubbing
interval was exceeded are scrubbed immediately. If we ac-
cess disks rather frequently, then the actual scrubbing inter-
val is very likely to be close to the scrubbing interval target
with relatively low variation. If disks are accessed less fre-
quently, then the variation of the actual scrub intervals is
much larger and the probability of having a block failure is
closer to that obtained with random scrubbing.

Figure 3 confirms that opportunistic scrubbing can per-
form nearly as well as deterministic scrubbing. We used
an average scrub time of 104 hours (about once per year)
and a block MTBF of 105 hours. We varied the access rate
between once per 102 hours (about 4 days) to once per
8�103 hours. In our model, the system’s goal was to scrub
an s-block every 104 hours, but it is unlikely that one of the
random accesses to the disk would fall conveniently at the
correct moment for scrubbing. Instead, the scrub is done
at the first access that falls after 104 hours have elapsed
since the last scrub. Actually, in order to maintain the ex-
act mean time between scrubs, we scrub at the first access
after 104 hours minus the average disk access time have
elapsed. The difference in practice is minute, since we as-
sume that disk accesses are much more frequent than scrub-
bing operations in order to save power-on hours. We see
that the probability of having a failed disk stays for small
MTBA close to the deterministic probability,but that at a
value of 20% to 30%, the probability moves up towards the
value for random scrubbing. We recall our earlier observa-
tion that the absolute values of the three numbers (MTBA,
MTBS, MTBF) do not matter, but only their relation. As we
move towards more realistic scrubbing intervals, the differ-
ence of the failure probability between random and deter-
ministic scrubbing becomes much smaller.

Our model shows that opportunistic scrubbing gains
most of the benefits of deterministic scrubbing with no ad-

ditional power up / down cycles. In addition, it is not the
size of the scrubbing area but but the rate at which each disk
area is scrubbed that affects reliability. Of course, in many
practical systems, cooling can be a problem and running a
disk for the several hours to completely scrub it could lower
the disk drive’s reliability.

5. Power Cycling and Reliability

Turning a disk on and off has a significant impact on
the reliability of the disk. This is especially true for com-
modity disks that lack techniques used by more expensive
laptop disks to keep the read/write heads from touching the
surface during power-down. Before a commodity disk pow-
ers down, it parks its heads over a specially textured area,
typically near the spindle to enable the heads to break free
from the surface during power-on. Even for laptop disks
that ramp load their heads, the spin-up period is more likely
to cause a head crash than normal disk operations.

Disk manufacturers are reluctant to publish actual fail-
ure rates because they depend so much on how disks are
operated; large consumers of disk drives share this reluc-
tance. We base our modeling on a report published by Sea-
gate [1, 12]. The Mean Time Between Failure (MTBF) of
disks is specified as a rate per operating hours. The MTBF
value needs to be multiplied by a factor dependent on the
expected Power On Hours (POH) of the disk. For exam-
ple, if the POH is 492 hours per year (80 minutes per day),
the MTBF increases by a factor of 2.05. For 2400POH, the
multiplier is one, and for 8760 h per year (the disk runs con-
tinuously), the multiplier is about 0.6. Because of the shape
of this curve, we have to assume that these data reflect the
same number of power on / off cycles per year.

Based on this assumption, we can now estimate the im-
pact of power cycling on reliability. Since the disk does not
remain powered off indefinitely, we can disregard any im-
pact of the power-off time on the failure rate of the disk.
Therefore, we are left with two failure causes: operation of
the disk and power on/off. We capture the former with a
constant failure rate λt and the latter with a constant fail-
ure rate per power up λ p� Thus, the failures per year of a
set of these disks are given by λ p �Np �λt � t, where Np is
the number of power-ups and t is the POH value. The mul-
tiplier is then given by λ p �Np�t �λt . By using two of our
Seagate values to solve for both λt and λp �Np, we obtain
λt � 0�53, which means that the impact of power on / off is
about the same order of magnitude than running the disks.
Unfortunately, without knowing Np it is impossible to esti-
mate λp. While not stated in the Seagate report, we can as-
sume that these numbers involve a single power on / off
per day. If this is the case, our calculations suggest that a
power on / off cycle is approximately equivalent to running
the drive for eight hours in terms of drive reliability, though



this equivalence may vary with different drives. In a drive
designed for power cycling, such as a laptop drive, the reli-
ability effect of a power cycle would likely correspond to a
much shorter operating time.

6. Finding the Optimal Scrubbing Interval

We now assemble our various models to determine op-
timal scrub time intervals. Since systems vary widely, we
cannot derive generic prescriptions; rather, we present a
methodology that can provide guidance in choosing scrub-
bing parameters. Our approach only uses system reliabil-
ity as a metric. For example, we do not include the cost
of replacement drives necessary due to aggressive scrub-
bing that increases the power-on hours of individual drives
which then fail more frequently. Heat generation is also
an issue. For example, scrubbing an archive consisting of
250 Seagate ST3200822A disks of 200 GB each gener-
ates 13,658 BTU per single scrub operation. If the sys-
tem scrubs disk drives aggressively, it needs millions of
BTU in cooling, or failing this, reduce the lifetime of disk
drives considerably. We also neglect the consequences of
the switches of power on and off for both random and de-
terministic scrubbing in our modeling, although we take the
total power-on hours of disk drives into account. In our sim-
ulation part, we will show the impact of the power-on/off
switches on system reliability and will present the advan-
tage of opportunistic scrubbing.

Scrubbing increases system reliability because it lowers
the possibility of encountering a block failure during a re-
construction. However, too frequent scrubbing lowers sys-
tem reliability because it increases the operating hours of
devices. As we will see, small changes in the probability of
unmasking a block failure can have a great impact on sys-
tem reliability. In general, we assume that block failures
are aggressively repaired by powering up disks that con-
tain data in the same redundancy group. In a very large
system with a high degree of failure tolerance, we might
instead adopt a lazy strategy where repair operations are
piggy-backed on disk accesses, or even start data recon-
struction only when a certain threshold of r-blocks are not
available.

We construct standard Markov models of the systems,
neglecting the failure mode that consists only of block fail-
ures. This is because the chances that an individual disk
sector has failed are so minute that we need not worry about
multiple block failures in the parallel sectors within the re-
liability group. Under this assumption, a block failure only
comes into play when this block is needed in order to deal
with a device failure. A spare drive is assumed to be avail-
able for reconstructing data of the failed driver. Under this
assumption, we model the situation after a device failure by
two possible transitions. The first transition is a second de-
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Figure 4. Markov model for a two-way mirror-
ing system with N disk drives.

vice failure that brings the system closer to data loss or even
induces data loss. The second transition is the repair transi-
tion which depends on the availability of all needed blocks.
If these are not available, then we have a data loss.

In our first example, we study a system that uses declus-
tered mirroring. The system contains N � 250 disk drives.
We assume that two simultaneous drive failures lead to data
loss. We can model this system with three states, as shown
in Figure 4. State 0 models a system without device fail-
ure, and State 1 models a system with a device failure, but
one from which we can recover, and State FS is the fail-
ure state. One of the N disks in the system fails with rate
N �λdd. With probability p, the mirrored copy—which we
can treat as a virtual disk of the same size as a physical disk,
distributed throughout the system—has a block failure on
it, preventing recovery. This is a transition into the absorb-
ing failure state. However, with probability q � 1� p, the
mirrored copy—or rather the blocks that make up a mirror
of the failed device—is free from block errors and we can
proceed with recovery. From State 1, we have a repair tran-
sition to State 0 taken with rate γ , which is set by the length
of time needed to do distributed recovery. Another failure
in State 1 leads to data loss; thus, there is a transition from
State 1 to the failure state taken at rate �N�1� �λdd.

The device failure rate λdd and probability p that the dis-
tributed mirror has a block failure are determined by the in-
tensity of scrubbing operations. Following [12], we assume
that λdd � µ�t� � λ0 � t, where t is the power-on hours per
year, µ�t� is the scaling function in MTTF of disk drives,
and λ0 is the specified rate of device failures per year, with
the result measured in years. If we use opportunistic scrub-
bing, then we do not pay a penalty for powering up the disk,
but instead run the disk longer. If we scrub disks at a rate
of τ (measured in the number of scrubs per year), and if it
takes S hours to completely read a disk, then we have S � τ
additional power-on hours per year for disk scrubbing. We
simplify by assuming that µ remains constant, resulting in
a failure rate with scrubbing of λdd � µ �λ0 � �t �S � τ�.

For our experiment, we chose a device failure rate of
λdd � 5�10�5 hours and a block failure rate of 10�5 hours,
and set S � 4hours. The results of this model are shown
in Figure 5(a); the middle line is the result of opportunis-



tic scrubbing. Since we did not have a functional expres-
sion of the probability of a block failure at a random mo-
ment, we used simulation to estimate the number, result-
ing in a non-smooth curve. We obtain lower and upper lim-
its by calculating system MTBF for random and determin-
istic scrubbing, excluding the costs of power-ons into ac-
count. Figure 5(a) shows that, if few scrubs are needed each
year, opportunistic scrubbing functions just as determinis-
tic scrubbing, since there are many accesses on which to
piggy-back a scrub operation. The graph also shows the
large impact of block failure probability, and suggests al-
most daily disk scrubbing for highest reliability.

When the cost of power-cycling is included, however,
deterministic scrubbing has much lower reliability. Assum-
ing that each power on operation has the same impact
on device reliability as running the disk for eight hours
dramatically reduces system reliability with deterministic
scrubbing, as the “deterministic w/cycling” curve in Fig-
ure 5(a) shows. Opportunistic scrubbing does not require
additional disk power-on events, so system MTBF is unaf-
fected even if power-on cycles are considered.
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Figure 5. System MTBF for different storage
system configurations.

In an archival system, we might forego distributed mir-
roring for the simplicity of dedicated mirrors. Our second
example models a system of the same size, in which en-
tire disks rather than reliability blocks are paired; the re-

sulting model can be solved explicitly. If a disk failure is
discovered, then we can recover from it under two condi-
tions: the mirror disk does not fail until we have recon-
structed all the data on a spare disk, or the mirror disk does
not have a block failure. The probability pmf that the mir-
ror disk fails during the reconstruction time Trec is given
by pmf � λdd�t� � Trec. The device failure rate λdd itself is
given by the number t of power-on-hours, the time it takes
to scrub (read) a disk S and the rate τ of scrubbing, resulting
in λdd � µ �λ0 � �t �S � τ�. We already calculated the prob-
ability pbf that a disk has one or more block failures, de-
pending on the scrubbing discipline. As long as we use op-
portunistic scrubbing and piggyback scrubbing operations
onto accesses to disks, and as long as we scrub significantly
less than we access the disk, so that we can assume op-
portunistic scrubbing to be like deterministic scrubbing, we
have

pbf � 1� �τ�λbf ��1� exp��λbf�τ�

. The probability P that we cannot recover the disk is
then P � pmf � pbf � pmf � pbf , and system MTBF is
MTBFsystem � 1�N � λdf �P. For a system with parameters
similar to those used in Figure 5(a) but using disk mirror-
ing, the system MTBF is nearly twice as large and the op-
timal scrubbing rate is close to three times per day, as Fig-
ure 5(b) shows. This rate is clearly too high, since, at
this rate, opportunistic scrubbing is no longer perform-
ing as well as deterministic scrubbing.

7. Simulation Results

In this section we present our results from an event-
driven simulation. We compared the data loss occurrence
under various disk scrubbing schemes in an archival stor-
age system and showed how scrubbing rates impact system
reliability.

7.1. System Parameters

We simulated a disk-based storage system that contains
one petabyte (1PB � 1015 B) of archival data. We assume
that disk drives have an MTTF of 105 hours and are re-
placed after reaching their retirement age. We distinguish
block error and device erasure failure on hard disk drives,
as described in Section 2. We consider the effect of power-
on hours on disk reliability using the model described by
Anderson, et al. [1]. We assume that data loss is only no-
ticed when that piece of data is accessed.

Data is distributed across 10,000 disk drives evenly us-
ing 10 GB reliability blocks; the placement algorithm [5]
guarantees that the original data and its replicas or par-
ity blocks will never be put on the same drive. We assume
user data traffic is about 1 TB/day; data access comes not



only from the user activity such as reads/writes, but also
from internal maintenance. We considered two different re-
dundancy schemes: two-way mirroring and RAID 5. For a
large-scale data archival system, mirroring is expensive in
terms of storage cost, although it is simple in implemen-
tation and requires fewer disks to be powered on during a
data access. We assume that data on a failed disk will be re-
constructed to a spare disk. Since the main concern in our
system is the power-on hours of disk drives, not bandwidth,
we do not use distributed recovery schemes.

7.2. Comparison of Data Scrubbing Schemes

We first explored the three data scrubbing schemes—
random, deterministic, and opportunistic. Figure 6 shows
the number of data losses for the one petabyte archival sys-
tem over 100 years under various scrubbing schemes, and
compares this to the case when no scrubbing is done. Please
note that the designed lifetime of a disk drive is about 5–7
years, so it requires disk replacement for many times dur-
ing the simulated time. Two data redundancy schemes are
configured: two-way mirroring, shown in Figure 6(a) and
RAID 5 across four disk drives, shown in Figure 6(b). We
vary the data access frequency to emulate the data “temper-
ature” in such a system. The simulations graphed in Fig-
ure 6 assume that one terabyte of data is accessed in 12,
24, 48 and 72 hours. Note that only 1%–3% of the disk
drives need be powered on to access one terabyte data. We
set up the Mean-Time-To-Scrub of a single disk drive as
about three times per year for random and deterministic
schemes. For the opportunistic scheme, we set the ratio be-
tween data access rate and disk scrub rate so that each disk
drive would be scrubbed no more than 3 times per year. Un-
der opportunistic scrubbing, disks are only scrubbed when
they are already on because of another data access, reduc-
ing the switches between power-on and off.

When no scrubbing is done (“no-scrub” in Figure 6),
there is a great deal of data loss over 100 years. Since block
errors accumulate as time goes by, it is likely the block er-
rors will prevent data recovery when an entire disk fails.
The number of data losses drops greatly when disk drives
are scrubbed under various schemes, demonstrating the im-
portance of scrubbing on system reliability.

We observed that, in most configurations, the occurrence
of data loss decreases when the rate of user data accesses
decreases, except for the opportunistic scrubbing when data
access becomes very infrequent for the two-way mirror-
ing redundancy configuration. This is because the chance
for disk scrubbing decreases as we only execute scrubbing
when data gets accessed. We can see that random scrub-
bing performs the worst of the three scrubbing schemes
and that the opportunistic scheme provides high reliabil-
ity when data access is relatively frequent, but the num-
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(b) RAID 5 redundancy.

Figure 6. Occurrences of data loss over a 100
year period for different access frequencies
under various data scrubbing schemes.

ber of data losses increases when data is accessed infre-
quently. We found that the likelihood of data loss is a little
higher under RAID 5 as compared to two-way mirroring
when disk scrubbing is used because of the difference in
storage efficiency of two-way mirroring and RAID 5. Our
current comparisons are based on a fixed number of disk
drives rather than on fixed user capacity; fewer disk drives
are required for RAID 5 than two-way mirroring to provide
the same usable capacity. We plan to compare these two as-
sumptions in our future work.

7.3. Disk Scrubbing Frequency

We have shown that opportunistic scrubbing is the most
attractive among the three mechanisms when data access is
relatively frequent. For systems where data is infrequently
accessed, we must power disks on periodically to scrub
them in addition to doing scrubbing when the drive is ac-
cessed normally, resulting in a scrubbing process that is a
mix of the opportunistic and deterministic schemes. In such
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Figure 7. The number of data losses over
100 years under opportunistic disk scrub-
bing with different scrub rates for two differ-
ent disk MTTF values.

a system, how frequently should drives be scrubbed? The
chance of data loss in a large-scale archival system depends
heavily on the rate at which disk drives are scrubbed. More
frequent scrubbing promptly detects errors at the cost of
long power-on hours and more power cycles. In our sim-
ulations, we fixed the data access rate at one terabyte per
24 hours, which implies that each disk drive would be ac-
cessed three times per year on average.

In Figure 7, we show the number of data losses with the
varied scrubbing rate in 100 years. We also compare two
types of drives with MTTF of 100,000 and 50,000 hours.
We see a sharp drop in the likelihood of data loss when a
disk drive gets scrubbed at least once per year. When the
rates of data access and disk scrubbing are equivalent on
a disk drive, i. e., three times per year, the chance to of
data loss is fairly low: it occurs about one time for disks
with 100,000 hour MTTF and two times for those with
50,000 hour MTTF. Interestingly, we did not observe a fur-
ther decrease in data loss as we increased the scrubbing
frequency from three to eleven times per year; rather, a
slight increase in data loss was noticed. This phenomenon
comes from the POH (power-on-hour) effect on drive reli-
ability. Aggressive scrubbing requires more power cycles,
adversely affecting drive reliability. For systems designers,
it is important to consider the effect of power-on/off and to
measure tradeoffs between too little and too much scrub-
bing when they make the decision of the scrubbing fre-
quency.

8. Conclusions and Future Work

We studied the impact of disk scrubbing on a large
archival storage system, showing that scrubbing is essen-
tial to long-term data survival. We established a method-
ology to model disk scrubbing and showed by example
that disk scrubbing is an important technique to protect
against the impact of block failures. We examined three

different disk scrubbing techniques—random, determinis-
tic, and opportunistic—and showed via both modeling and
simulation that opportunistic scrubbing is the most attrac-
tive scheme because it does not power on disk drives solely
to check them, instead using “normal” power on periods to
scrub the drives. We also explored the frequency of disk
scrubbing and showed that the power-on-hour effect has
a significant impact on overall reliability in large archival
storage systems.

Our research has established that disk scrubbing is an
important tool for system designers as petabyte-scale long-
term archives begin to use disks rather than tapes. However,
there is still much to be done in exploring the use of disk
scrubbing for long-term archiving. For example, are there
additional scrubbing policies that may do even better than
the three simple policies we have proposed? Are there stor-
age system changes, such as different file systems or re-
dundancy techniques, that might make scrubbing easier or
more efficient? Additionally, our analysis has been ham-
pered by the lack of exact numbers; we hope that this study
gives impetus to a further analysis of disk drives in various
settings. By developing more detailed models, validating
them with practical experiences, and developing new tech-
niques for better, more efficient disk scrubbing, we hope
to provide long-term archive designers with the tools they
need to ensure that data is never lost because of media or
device failure.
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