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Abstract 

 
Highly available storage uses replication and other 
redundant storage to recover from a component failure.  
If parity data calculated from an erasure correcting 
code is not updated or becomes otherwise corrupted, 
recovery from a failure does not recover the correct 
data but mostly garbled data.  This paper presents an 
algebraic signature scheme that can detect parity 
discrepancies for parity calculated with XORing, 
generalized Reed-Solomon codes, or convolutional 
array codes.   Maintaining and checking the signature 
of client and parity data allows us to ensure coherence 
in the storage system and thus to accurately rebuild 
data on lost devices.  Our scheme is combined with disk 
scrubbing, necessary to detect masked disk failures. 
Keywords: Highly available storage system. 
Redundancy group coherence. Reed-Solomon codes. 
Convolutional array codes. 

 
1. Introduction 

 
As disks outpace tapes in capacity increases, large 

scale storage systems based on disks have reached the 
planning stages at institutions such as the U.S. National 
Laboratories.  Such a system encompasses several 
thousand disks and reaches a storage capacity of 1-5 
Petabytes (PB).  Despite its large size and despite its 
use of commodity disks, the availability of files needs 
to be very high, since data often cannot be reproduced 
or only at large costs. For example, the system might 
store terabytes of data striped over many disks from a 
single simulation.   

The large number of devices in such a system 
increases the likelihood of failures.  For instance, error 
rates of one undetected, repeated read error of 1 in 1015 
bits on a commodity disk are common.  A single disk 
running at 25MB/sec would experience such an error 
about once a year.  In a large scale storage system with 

10,000 disks, such an error will occur once per hour 
somewhere in the system.  Many of the error modes are 
masked such as this one, that is, we only detect them 
when we try to read a block of data, or even more 
insidiously and fortunately much more rarely, if we try 
to use the data in the block. 

To protect against the effect of failures, we store 
data redundantly.  For example, we store two copies of 
each datum (mirroring), or we group data blocks 
together in a redundancy group to which we add a 
parity block that contains the bitwise xor (the parity) of 
the data blocks. The latter is the scheme used in RAID 
Level 5.  To achieve higher levels of availability, we 
can place the same data block into a number of 
redundancy groups, or even simpler, add more than one 
parity block to the redundancy group.  The latter 
involves using an erasure correcting code (ECC).  To 
clarify our argument, we also call a group of mirrored 
or replicated blocks a redundancy group. 

The large number of devices in the system not only 
increases the likelihood of failures but forces us to pay 
attention to failure modes that are negligible for 
traditional disk arrays with less than one hundred disks.  
This paper focuses on one of these concerns, namely 
how to detect if incoherency within a redundancy 
group. If the coherence of redundant data is lost, then 
data rebuild after a failure does not recover the data lost 
but some seemingly random value.   

To illustrate the redundant data coherency problem, 
assume that we mirror data. A device with one of the 
three replicas fails.  Because of an undetected, 
repeatable read error, the two remaining replicas differ.  
To decide the true copy, we need to investigate their 
meaning, that is, by finding out which of the two values 
makes sense.  This is sometimes impossible, and most 
often requires human intervention.  The problem 
becomes worse if we use ECC. 

We solve the problem of undetected client and parity 
data corruption with a scheme based on signatures with 



algebraic properties.  Signatures or hashes are small 
strings calculated from the contents of a storage block.  
They change when the block is slightly altered and two 
arbitrary blocks have the same signature only with 
probability 2-f, where f is the length of the signature in 
bits.  Our signatures allow us to calculate the signature 
of a parity block (such as produced by RAID 5) or a 
generalized parity block (produced by an erasure 
correcting code such as Reed-Solomon or an array 
code) from the signatures of the data blocks.   

To protect data integrity, we maintain a signature for 
each data or parity block in the disk farm, stored on the 
disk itself.  Periodically, each disk checks whether the 
signature faithfully reflects the block contents.  Also 
periodically, each disk checks whether for any 
redundancy group (formed by client data blocks and 
associated parity blocks) it stores, the signatures prove 
that parity blocks reflect the data.  Our scheme works 
for n-way mirroring, RAID Level 5 like parity groups 
with a single (XOR-)parity block, and RAID Level 6 
like parity groups with more than one parity block that 
use generalized Reed Solomon codes or convolutional 
array codes. 

2. Disk Based Large Storage Systems 
 
Disk arrays have gained increasing market share and 

are expanding into near-line systems that were once 
served with tape drives. The internet archive [9] is an 
example of such a facility that stores over 100 TB of 
compressed data on approximately 150 desktop 
computers with four hard drives each.  In order to deal 
with the likelihood of device failure in systems of this 
and larger size, we introduce some type of redundancy 
into the storage of data.  A prevalent choice is 
mirroring as implemented in RAID Level 1, 10, 0/1 etc. 
Calculating and storing parity is another important 
technique, in which the bitwise parity (the exclusive or) 
of a number of data blocks is stored on yet another 
disk.  Since any data block is also the parity of all other 
data blocks and this parity block, it is possible to 
reconstruct any lost data block as long as all the others 
are still available.  Raid Levels 4 and 5 use this scheme. 
For systems in the PB range, we need to use a higher 
level of protection than provided by simple RAID [3], 
[18], [19]. To do so, we can group blocks on different 
disks in a redundancy group like before, but add two or 
more parity blocks to each redundancy group. We then 
use Erasure Correcting Codes (ECC) to calculate these 
parity blocks.  We describe two good ECC in Section 5. 
RAID Level 6 uses this scheme. Alternatively, we can 
place blocks in more than one redundancy group and 
add a parity block for each of the redundancy groups.  

In general, we place m blocks of user data into a 
redundancy group, add k parity blocks to the group, so 
that all n = m + k blocks reside on different disks and 
so that access to any m blocks (whether parity or data) 
allows us to rebuild any lost block.  We refer to such a 
scheme as an m/n scheme and call it k available.   

 
3. Problem Definition 

 
3.1.  Masked Disk Drive Failures and the Data 

Parity Coherency Problem 
 
Data in a storage system faces three threats: outright 

disk failure, disk block failure (when we cannot read a 
block on an otherwise functioning disk even with 
multiple trials), and data corruption.   Device failures 
are easy to detect and we deal with device failure by 
using the storage redundancy to rebuild the contents of 
the drive on one or more other drives. We detect block 
failures by performing disk scrubbing, that is, reading 
periodically all the data on the disk.  Once a block 
defect has been detected, we can rebuild the data on the 
affected block on another disk or even in the same spot.  
(Sometimes an off-track write destroys data on an 
adjacent track, but the affected block of course be 
reused.)   

Block failures can arise in a number of ways. For 
example, the magnetic media might deteriorate in a 
spot, maybe because a particle was wedged between the 
head and the media, scratched the surface, and 
permanently destroyed the capability of the media there 
to retain magnetic data [7].  Occasionally, a disk suffers 
bit rot, that is, one or a few bits flip.  For example, at 
current areal densities achieved on production hard 
drives, traces of the super-paramagnetic effect 
(thermodynamic instability of small magnetic spots) 
can already be detected on every drive.  In the vast 
majority of cases, an internal checksum flags an 
affected block as unreadable, when accessed.  
Sometimes, this bit rot is not detected and corrupted 
data is given to the user.  A much more potent source of 
data corruption is of course software failure.  For 
example, a write operation might not be performed at 
all the disks that need to be written and leave the 
application data in an incoherent state.   

Media errors and data corruption are masked 
failures, they only become apparent when we try to use 
the affected data.  Data corruption is more insidious, 
because we need to recognize the corruption.  This is 
difficult enough for user data, but we can only discover 
the corruption of parity data by comparing it with the 
user data that it protects.  This is the parity-data 
coherency problem.  It can prevent us from successfully 



rebuilding otherwise lost data.  Consider the following 
two scenarios: 

Scenario 1: We store three replicas of datum A: A0, 
A1, and A2.  Assume replica A1 is lost and that replica A0 
and A2 differ.  Which one is the true copy which we 
want to replicate twice?  We need to base our decision 
on whether A0 or A2 make sense.  If both make sense, 
we are stuck. 

Scenario 2: Assume that we use a n/(n+2) scheme, 
that is, that we group n data blocks (or objects) D0, D1, 
… Dn-1 into a redundancy group and add parity blocks 
(or objects) P0 and P1.  Of course, all data and parity 
blocks are located on different disks.  Now assume that 
D1 has suffered data corruption, but is still readable.  
Assume that the device carrying D0 fails.  We can 
recover by assessing any n of the n+1 remaining 
blocks.  But if we include D1 into the mix, then the 
recovered version D0, let us call it D0’, is not the 
original D0.  The true D0 is still recoverable, but only 
by using D2, D3,…, P0, P1.  Again, we can only make a 
decision based on whether the recovered D0 is 
meaningful or by checking D1,…Dn-1 directly.  This 
scenario shows that unmasking the corruption at D1 has 
a direct effect on the availability of the otherwise 
unrelated data blocks D0, D2,… Dn-1.   

The redundancy group coherency problem can arise 
not only from bit rot, but also from faulty software that 
on rare occasions might fail to update some parity data 
when client data is written or vice versa.  As we have 
seen, this affects the reliability of all data blocks in the 
redundancy group.  

To summarize, in a highly available storage system, 
we need to discover quickly masked failures such as 
media failures and data corruption.  In addition, we 
need to maintain the coherency of data within a 
redundancy group. 

 
3.2 Signature Schemes 

 
Our solution flags corrupted or incoherent data in 

the hope that quick detection allows us to repair the 
damage before any lasting harm is done.  We associate 
a signature with each data and parity block.  These 
blocks can be quite large, e.g. 1GB.  The determination 
of the optimal size is beyond the scope of this paper, 
but see [18], [19]. In contrast, our signatures are quite 
small, as small as 4B or 8B. The signature (a.k.a. hash, 
checksum) is a bit string of fixed length l that is 
calculated from the contents of the block.  We could 
use cryptographically strong hashes such as MD5 and 
SHA1 as in Tripwire [11] to verify block contents, but 
this would not protect us from incoherent parity data. 

We use an “algebraic signature” defined below that 
we store with each block. The signature is guaranteed 

to change with small changes in the block. Two random 
blocks have the same signature only with probability 2-f 
(where f is the length of the signature in bits).  The 
algebraic properties of the signature allow us to 
calculate the signature of an updated block from the 
update information only. They also allow us to 
calculate the signature of parity blocks, whether 
generated by parity as in RAID 5, or by generalized 
Reed-Solomon or the convolutional array codes. 

 
4. Algebraic Signature Definition and 

Properties 
 

4.1. Galois Field Operations 
 
Our algebraic signatures use Galois field 

calculations. The elements of this Galois field are 
symbols, that is, bit strings of length f.  Typically, f = 8, 
and then a symbol is simply a byte.  Sometimes it is 
advantageous to use f = 16 (half-words) or even f = 32 
(words).  We can add, multiply, and divide symbols 
just as we manipulate real numbers or rational numbers 
(fractions).  There are two special elements, the zero 
element 0 and the one element 1, given by the bit 
strings 0000 … 0000 and 0000 … 0001. The addition is 
simply the bitwise XOR of the string.  The 
multiplication is more involved and several 
multiplication algorithms are known. We use a method 
based on logarithm and antilogarithm table.  It is fairly 
easy to find an element α in the Galois field such that 
all non-zero elements are powers of this α. Such 
elements are called primitive.  If β = αi, 0 ≤ i ≤ 2f-1, 
then we write i = logα(β) and β = antilogα(i).  For 
nonzero γ and η we then have 

 antilog (log ( ) log ( )).α α αγ η γ η⋅ = +   
A product with one or both factors zero is of course 
zero.  We implement now Galois field multiplication 
through table look-ups. The size of the tables in our 
implementation [13] is a moderate 3·2f for f = 8, 16. For 
f = 32, a multiplication can be done using five 
multiplications in the smaller Galois field with f = 16.  
See [13] or [14] for a more detailed explanation.  While 
we define signatures in terms of Galois field operations 
(Section 4.2), we actually do not use multiplications 
when we calculate signatures (Section 4.3). 

 
4.2. Signature Definition 

 
A block P is a string of n symbols pi, 1≤i≤l, which in 

turn are bit strings of length f.  In our case, the symbols 
pi are bytes or 2-byte words.  The symbols are elements 
of the Galois field, GF (2f).  



  
Definition 1:  Let α be a primitive element of the 
Galois field GF(2f), P = (p1,p2,....pl) be a block, and m 
be an integer ≥ 2.  Then define 

2 -1

1

1

, 1

sig ( ) :

sig ( ) : (sig ( ),sig ( ),sig ( )..., sig ( ))m

l

m

P p

P P P P

ν
α ν

ν

α α α α

α −

=

=

=

∑
P

 

We call sigα,m the m-signature with base α. 
 
The m-signature is a vector with m coordinates, each 

of length f bits, so that the combined signature is mf bits 
long.  The first coordinate of the m-signature is the 
XOR of the symbols in the block.  This coordinate is 
included because of the ease of calculation, but not 
essential to the properties of the signature, which could 
alternatively consists of the sigβ(P) with β=α1, ... αm. 
Definition 1 is related, but not identical to the one in  
[2] and [10]. We now list a number of properties of our 
algebraic signatures: 

 
Proposition 1:  If the block length l is smaller than 2f – 
1, then the m-signature with base α discovers any 
changes of up to m symbols. 
 
Proposition 2:  The probability that two signatures of 
two random blocks coincide is 2-mf. 
 
Proposition 3:  Let us change block P = (p1, p2, … pl) 
to block P’ where we replace the symbols starting in 
position r and ending with position s-1 with the string 

. We define the ∆-string as ∆ = (δ0, δ1, 
… δs-r-1) with δi = pr+i – qr+i.  Then for any β∈GF(2f): 

1, , ,r r sq q q+ " 1−

∆ .  sig ( ') sig ( ) sig ( )rP Pβ β ββ= +

 
Proposition 4: If we concatenate block P1 of length l 
with block P2, then we have  

1 2 1 2sig ( | ) sig ( ) sig ( ).lP P P Pβ β β= + β  
 

Proposition 5: Let P(i) , 1≤ i ≤ r, be r blocks, and let 
P(parity) be the block generated as the parity of the blocks 
P(i) , 1≤ i ≤ r.  That is, the symbols of P(par) are 
calculated as p(par)

i = p(1)
i ⊕ p(2)

i ⊕ …⊕ p(r)
i . Then 

where the xor of vectors is taken coordinate-wise. 

(par) (1) (2) ( )
, , , ,sig ( ) sig ( ) sig ( ) ... sig ( )r
n n n nP P Pα α α α= ⊕ ⊕ ⊕ P

 
Our signature also detects swapping two sub-blocks 

in the same block [14], [16].  The proofs of 
propositions 1-5 is in [14].  Prop. 2 says that the 
probability of a collision – two blocks having the same 
signature – is minimal. Prop. 3 shows that algebraic 
signatures allow us to update a signature of a changed 

block without recalculating the signature of the whole 
block. Without this property, maintaining signatures of 
large blocks through updates would involve 
recalculations. Prop. 5 implies that we can use our 
algebraic signature in order to check the coherency of 
data blocks with a parity block generated as the XOR 
of the data blocks.  This proposition allows us to check 
the coherence of an xor parity block with its data 
blocks through signature comparisons alone. We 
expand this key property in Section 5. 

 
4.3. Signature Calculation 

 
If we directly implement the definition, calculating 

the signature of a block with n symbols takes ~2n 
multiplications and n additions.  A typical block in our 
scheme might consist of 16M symbols of two bytes 
each, though larger blocks seem practical.  Because of 
this large size, it is important to improve the signature 
calculation.  We can do this by picking a special 
primitive element α, namely the bit string 0000…0010. 
We can multiply and element (bit string) β by α by 
shifting β to the left.  If this results in an overflow, we 
XOR with a constant bit string, the so-called generator 
polynomial of the Galois field.  Since we can use a 
Horner scheme, that is, write 
 ( )( )( )( )1 2 2sig ( ) l l lP p p p pα α α α α− − 1p= ⋅ + + + +"  

we have reduced the complexity of the signature 
calculation considerably.  To process a single symbol in 
the block, we multiply the signature up to this symbol 
with α by shifting and reducing if necessary, and then 
xoring the symbol to the current signature.  Following 
[2], we can further improve the multiplications by α by 
accumulating the overflows of several multiplications 
and reduce them according to a pre-computed table. 
Processing a single element costs us then a shift and an 
XOR and every so often, processing the overflow bits 
by a table look-up and a xoring.  This technique also 
applies to α2 = 0000 … 0100, α3 = 0000 … 1000 and 
other small powers of α, though with less savings.   

 
5. Erasure Correcting Codes and 

Signatures 
 
To generate the parity blocks from the data blocks in 

a redundancy group, we use an erasure correcting code. 
Given a vector a= of data symbols, where 
a1 is taken from the first data block, a2 from the second 
data block, etc., an ECC generates a longer vector u = 

where the parity symbols 
am+i are calculated from the data symbols. A block 

1 2( , , , )ma a a…

1, , )m ka+ +…1 2( , , , ,m ma a a a…



consists of a string of symbols.  We use the first symbol 
in all data blocks to form the data symbol vector a, then 
use the ECC to generate vector u, then take the m+ith 
coordinate of u to be the first symbol in the ith parity 
block.  We then use the second symbol in each data 
block to calculate the second symbol in each parity 
block, and so on, until we have populated the parity 
blocks.    

The simplest ECC are n-fold replication codes, 
where we have only one data symbol and n-1 parity 
symbols, all equal to the data symbol.  Formally, a=(a) 
and u = (a, a, … , a).  The parity and the data blocks 
are then undistinguishable.  The next simplest example 
is the m-parity code, with a and u = (a1,a2, 
…, am, a1⊕ a2⊕…⊕am) .  This is the RAID 5 scheme. 

1( , , )ma a= …

Generalized Reed-Solomon codes use a generator 
matrix G with n rows and m columns.  The generator 
matrix has the form (I | P) where I is the m-dimensional 
identity matrix.  The block symbols and the coefficients 
are elements in the same Galois field.  The relationship 
between the a and u-vectors is simply u = a·G. The 
peculiar form of G implies that the coordinates of a are 
the first m coordinates of u.  To calculate a single parity 
symbol, we can merely multiply a with the 
corresponding column of P.  The m-parity code is a 
special case with P = t(1, 1, … ,1).  (The superscript “t” 
stands for transpose, that is, P is a m-dimensional 
column vectors with m coefficients 1.) The following 
proposition generalizes Prop. 5: 

 
Proposition 6: Let B1, … Bm be m data block and let 
Bm+1, … Bn be the parity blocks calculated with a 
generalized Reed-Solomon code.  Then 
( 1 2 1sig ( ), sig ( ),..., sig ( ), sig ( ), , sig ( )m mB B B B Bβ β β β β+ … )n

is a code word of the generalized Reed-Solomon code. 
 

Prop. 6 says that the signature of a parity block is 
calculated as the Reed-Solomon code calculated parity 
of the signatures of the data blocks.  Accordingly, by 
looking at the signatures of the blocks only, we can 
discover (with very low probability of error) whether 
the data blocks indeed generated these parity blocks.  If 
k = n-m is large enough to correct errors, we can even 
determine which data block has been changed without 
changes to the parity blocks or which parity blocks 
have not been updated, as long as the number of blocks 
in error is smaller than k/2.   
Proof: Let Pλ, λ ∈ {m+1, …, n} be a parity block.  
Denote the ith element of Pλ with pi,λ.  Similarly, denote 
the ith element of a data block Pν  with pi,ν. Finally, 
write the coefficient in row i and column j of the 

generator matrix G as gi,j.  According to the definition 
of generalized Reed-Solomon codes,  
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Thus, the signature of the parity block is calculated as 
the Reed-Solomon code parity of the signatures of the 
data blocks and the proposition follows.                   
 

Convolutional Array Codes (CAC) use only XOR 
operations to generate parity data.   If we think of the 
bits in the data block put into columns, then a CAC 
uses horizontal and diagonal parity lines at various 
slopes to generate parity bits in additional parity 
columns.  A CAC will generate parity blocks that are 
longer than data blocks.  However, this “overhang” is 
only a few bytes and could be stored together with 
metadata of the parity block.  Figure 1 shows a small 
CAC with three data blocks and three parity blocks.  
The first parity block (block 4 from left to right) 
contains the parity along horizontal lines, the second 
one along lines of slope 1, and the last one along lines 
of slope 2. Since we can store the overhang separately 
from the blocks with the metadata, CAC are very 
attractive because of their speed and simplicity of 
erasure correction.  We have the analogue to 
Proposition 6. 

 
Proposition 7: Let P be a parity bucket generated 

by a CAC along the lines of slope s.  Let B1, …, Bm be 
the data buckets.  Then sigβ(P) =  sigβ(B1) + β s sigβ(B2) 

+ … + β (m-1)s sigβ(Bm). 
 
Proof: We recall that the addition in the Galois field is 
the XOR operation.  The symbols pi in P are thus sums 
of symbols in B1, …, Bm.  We write pi,λ for the ith 
symbol in Bλ and pi for the ith symbol in P.  The number 



The size of the blocks used for redundancy group is 
usually much larger than the 512B of disk blocks or the 
small multiples of these blocks in which file systems 
typically allocate storage.  The results in [18] and [19] 
indicate that currently block sizes of GB range are 
appropriate.  When we are speaking of blocks here, we 
mean these larger blocks. 

of symbols in P is l+(m−1)s.  In the following 
formulae, we assume that we pad formally the data 
blocks Bλ with zeroes, that is, that pi,λ = 0 if i<1.  We 
have 
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We now calculate 
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  We maintain a single data structure that maintains 
the m-signature with base α of each block of a 
redundancy group on the disk drive.  When we change 
data in the block, we calculate the new signature from 
the old signature value and the signature of the change, 
by applying Prop. 3 to the coordinates of the m-
signature.  In this way, maintaining the signature map 
only costs minimal overhead. 

This proves the proposition.  
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We run two distributed background processes in 
order to find masked failures, including redundancy 
group incoherence.  First, we periodically scrub a disk, 
that is, if necessary (such as in a MAID [4], [5]), we 
power a device up and compare the m-signatures 
maintained in our data structured with the one 
recalculated by  accessing all the blocks.  This 
operation detects media defects and data corruption.  
Second, we periodically use Prop. 5, Prop. 6, or Prop. 7 
to check whether the m-signatures of the parity blocks 
are the ones that the signatures of the data blocks in the 
redundancy group imply.  If this is not the case, then 
we know that the data in the redundancy group is 
incoherent. If we use replication instead, we merely 
have to compare the signatures.  Detecting this problem 
before a device failure triggers a reconstruction gives 
us more leverage to fix the problem, if necessary by 
simply recalculating parity blocks. 

 
7. Related Work 

 
Signatures are frequently used to identify objects 

and to capture changes. Applications include pattern-
matching (e.g. the fundamental proposal by Rabin and 
Karp [10]), protection against unauthorized updates 
(e.g. Tripwire by Kim and Spafford [11]), discovering 
differences in replicated databases, first proposed by 
Metzner [15] but then elaborated by many authors), 
synchronizing replicas (e.g. the work by Suel, Noel, 
and Trendafilov [17]), and distributed backup such as 
Pastiche by Cox, Murray, and Noble [6], to name but a 
few. Some applications use signatures with algebraic 
properties, e.g. decomposable hash functions [17]. 
Karp–Rabin fingerprinting [10] uses a formula close to 
the one that we are proposing for a distributed pattern 
matching algorithm that only sends the signature of the 
pattern to the searched sites. Karp-Rabin type 
fingerprints have recently been used to discover 

Figure 1: Array code example 

6. Signature Data Structure 
We recall that large storage systems place data into 

redundancy groups.  These consists of n blocks so that 
m < n suffice to rebuild all data on these blocks.  As we 
have seen, if the data in the redundancy group do not 
reflect the same state of the system, that is, if the 
redundancy group lacks coherence, then the capacity of 
the system to recover from device failure might be lost. 
Ascertaining redundancy group coherence is the goal of 
our scheme.  Our solution is build on another need, 
namely to quickly detect bit rot and other types of 
masked, partial failure of a device.  



similarity in documents, e.g. [2]. To my best 
knowledge, no one has yet used signatures with 
algebraic properties to compare parity data. Litwin and 
Schwarz [14] derive the fundamental properties of 
algebraic signatures and discuss their use in Scalable 
Distributed Data Structures (SDDS). Litwin, Mokadem, 
and Schwarz [12] report on a first implementation of 
the signature calculations.  The reported speeds show 
that algebraic signature calculation is about as fast as 
that of SHA1 signatures, but we believe that the results 
can be improved. 

 
8. Conclusion and Future Work 

 
As storage systems grow in size, statistically burst of 

failures become likely.  Large size (PB-scale) and 
increasing demands on resilience force us to take 
failure modes into account that are negligible for 
smaller systems.  This paper addresses one such mode, 
namely the undetected discrepancy between client data 
and parity data in a redundancy group.  This paper 
proposes a solution that works in conjunction with the 
detection of block failures such as media defects. I have 
presented an algebraic signature that can discover 
whether parity data generated by XORing, by a 
generalized Reed-Solomon code, or by a convolutional 
array code reflects faithfully the client data.  

Future work will include an implementation to prove 
the computational feasibility of the scheme. We also 
need to integrate disk scrubbing with the design of 
large scale storage systems, evaluate its impact on 
system reliability, and investigate optimal strategies in 
systems where disks are typically powered off 
(MAIDs). 

 
Acknowledgement 
 

I gratefully acknowledge support from the Santa Clara 
University IBM Research Grant EIBM0015 and from a 
generous gift by Microsoft Research. 

 
References 
 

[1] Blaum, M., Farrell, G., van Tilborg, H.: Array codes.  In 
Pless, Huffman (ed.) Handbook of Coding Theory II, p. 
1855 – 1909. North Holland, 1998. 

[2] Broder, A. Some applications of Rabin's fingerprinting 
method. In: Capocelli, De Santis, and Vaccaro, (ed.), 
Sequences II: Methods in Communications, Security, 
and Computer Science, p. 143 – 152. Springer-Verlag, 
1993. 

[3] Corbett, P, English, B., Goel, A., Grcanac, T., Kleiman, 
S., Leong, J. and Sankar, S.: Row-diagonal parity for 
double disk failure correction. In Proc. of 3d Usenix 

Conf. on File and Storage Technologies, San Francisco, 
CA, 2004. 

[4]  Colarelli, D. and Grunwald, D.: Massive arrays of idle 
disks for storage archives. In Proc. IEEE/ACM Conf.  on 
Supercomputing (SC2002), p. 47-58. 2002. 

[5] Colarelli, D., Grunwald, D., and Neufeld, M.: The case 
of massive arrays of idle disks (MAID). In Proceedings 
of Usenix FAST ’02. 2002. 

[6] Cox, L., Murray, C., and Noble, B.: Pastiche: making 
backup cheap and easy. In Proc. of 5th Sym. Operating 
Systems Design and Implementation, OSDI’02, p. 285-
298. 2002. 

[7] Elerath, J. and Shah, S.: Disk drive reliability case study: 
Dependence upon head fly-height and quantity of heads. 
In 2003 Proc. Annual Reliability and Maintainability 
Symposium, RAMS’03, p. 608-612. 2003. 

[8] Hellerstein, L, Gibson, G., Karp, R., Katz, R. and 
Patterson, D.: Coding techniques for handling failures in 
large disk arrays. In Algorithmica, vol. 12, p. 182-208, 
1994. 

[9] Internet Archive. http://www.archive.org/web/researcher 
/data_available.php. 

[10]  Karp, R. and Rabin, M.: Efficient randomized pattern-
matching algorithms. In IBM Journal of Research and 
Development, Vol. 31, No. 2, March 1987. 

[11]  Kim, G. and Spafford. E.: The Design and imple-
mentation of Tripwire: A file system integrity checker. 
In Proc. of the ACM Conference on Computer and 
Communications Security, p. 18-29, 1994. 

[12] Litwin, W., Mokadem, R. and Schwarz, T.: Disk backup 
through algebraic signatures in scalable and distributed 
data structures. In Proc. 5th Workshop on Distributed 
Data and Structures, Thessaloniki, 2003 (WDAS’03). 

[13] Litwin, W., Schwarz, T.: LH*RS: A High-Availability 
Scalable Distributed Data Structure using Reed-Solomon 
Codes. In Proc. 2000 ACM SIGMOD Int. Conf. on 
Management of Data, Dallas 2000, p. 237-247. 

[14] Litwin, W., Schwarz, T. Algebraic Signatures for 
Scalable Distributed Data Structures. Proc. of the 20th 
International Conference on Data Engineering (ICDE), 
Boston, 2004, p. 412-423. 

[15] Metzner, J. A Parity Structure for Large Remotely 
Located Data Files. IEEE Transactions on Computers, 
Vol. C – 32, No. 8, 1983. 

[16] Schwarz, T., Bowdidge, R. and Burkhard, W.: Low Cost 
Comparison of File Copies. In Proc. Intern. Conf. on 
Distributed Computing Systems, Paris, Fr., 1990, 
(ICDCS 5 Proceedings), p. 196-202. 

[17] Suel, T., Noel, P., and Trendafilov, D.: Improved File 
Synchronization for Maintaining Large Replicated 
Collections over Slow Networks. In Proc. 20th Int. Conf. 
on Data Engineering, ICDE, Boston, 2004, p. 153-164. 

[18] Xin, Q., Miller, E, Long, D., Brandt, S., Litwin, W., and 
Schwarz, T. Selecting reliability mechanisms for a large 
object-based storage system. In 20th Symp. on Mass 
Storage Systems and Technology. San Diego. 2003. 

[19] Xin, Q., Miller, E, Schwarz, T: Evaluation of distributed 
recovery in large-scale storage systems. 13th IEEE 



International Symposium on High Performance Distributed Computing, HPDC’04, Honolulu, HI, 2004.
 


	Introduction
	Disk Based Large Storage Systems
	Problem Definition
	Masked Disk Drive Failures and the Data Parity Coherency Problem
	Signature Schemes

	Algebraic Signature Definition and Properties
	Galois Field Operations
	Signature Definition
	Signature Calculation

	Erasure Correcting Codes and Signatures
	Signature Data Structure
	Related Work
	Conclusion and Future Work
	
	Acknowledgement


	References

