
Self-Adjusting Two-Failure Tolerant Disk Arrays
Ignacio Corderı́, Thomas Schwarz,S.J.
Informática y Ciencias de la Computación

Universidad Católica del Uruguay
Montevideo, Uruguay

ignacio@corderi.com tschwarz@ucu.edu.uy

Ahmed Amer
Computer Engineering
Santa Clara University

Santa Clara, CA
a.amer@acm.org

Darrell D.E. Long
Computer Science

University of California
Santa Cruz, CA

darrell@cs.ucsc.edu

Jehan-François Pâris
Computer Science

University of Houston
Houston, TX

paris@cs.uh.edu

I. INTRODUCTION

While flash and Storage Class Memory (SCM) technologies
stand to replace magnetic disk technology as the mainstay
for high end applications, the sheer amount of data to be
stored, the attractive cost-to-capacity ratios of disks, and the
high streaming throughput in comparison with not only tape
but also with high-end flash and SCM, give magnetic disk
technology a continuing and important role in the storage
hierarchy. This is true whether disks are relegated to tertiary
storage roles or remain as the secondary storage technology
behind flash/SCM-based caches. A practical disk-based stor-
age system at petabyte scale is both dynamic and heteroge-
neous, as the number of devices it would require means that
new disks with better performance, reliability, and capacity
will continuously enter the system as old disks leave due to
failure, age, or technical obsolescence.

Data stored in a peta-scale system needs to be protected, but
its size will make disk failure a daily occurence. Observed data
on the life expectancy of disks [1], [2] and the occurrence of
latent disk sector errors [3] suggest that tolerance of at least
two failures is necessary, possibly in conjunction with disk
scrubbing or intra-disk redundancy [4].

While replication offers operational advantages, the storage
overhead with its associated costs in hardware and energy is
too large. Many two-failure resilient systems have been pro-
posed in the past [5], [6], [7], [8]. We propose an old, simple
scheme in which every piece of client data is part of two
different reliability stripes encompassing data disks and one
additional parity each. Managing this simple layout over the
lifetime of an evolving system is difficult. Our contribution is
a graph-based representation that transforms layout decisions
into the construction of (almost) regular graphs and coloring
their edges and vertices with many colors. For this, we can
use simple, greedy and heuristic graph algorithms.

II. GRAPH REPRESENTATION

We store client data in disklets, virtual disks of fixed size
stored contiguously in the physical disks of the system. Using
disklets allows us to deal with the dynamism and heterogeneity
of the storage system, which at any time could contain disks
of varying generations and capacities. Disklets can be moved
transparently to the user between physical devices. The size of
the disklets offers a trade-off. Fewer, larger disklets are easier
to administer. More, smaller disklets fit better into the disks

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a

b

c

d

e f g h

a b

e f g h

1 2 3
4 5

6
7 8

c d

9
11
12 13

15 16
14

10

Fig. 1: A small two-failure resilient array and its design-
theoretical dual (right).

of varied sizes. Intuitively, we propose using disklets of about
100GB, which would mean that current disks would hold about
ten disklets each, with future generations introduced into the
storage system holding more. At this rate, no more than 100GB
(less than 10% of current high capacity disks) could potentially
go to waste. Space reasons prevent us from discussing how
even such apparently wasted storage space could yet be used.

A. Disklets, Reliability Strips, Configurations and a Dual

We distinguish between disklets that store client data and
disklets that store parity data (i.e., used only to recover from
disk failures). We place each data disklet into groups of n−1
disklets to which we add a single parity disklet. We call the
resulting ensemble of n disklets a reliability stripe. Data on a
single lost disklet in a reliability group can be recovered by
reading from all the other members of the reliability group.
To withstand simultaneous double failure, we place each data
disklet in two different reliability stripes. Of course, as disklets
on a single failed disk are likely to fail at the same time, we
will have to deal with common failure causes, but we will
come to that. A parity disklet belongs to only one reliability
stripe. A very simple example of such an arrangement is given
in Fig. 1, left. The ovals with numerical values represent
data disklets, while the hexagons with letters represent parity
disklets. The arrangement of disklets in rows and columns
represent assignment to reliability stripes. For example, data
disklets 13, 14, 15, and 16, together with parity disklet d, form
a reliability stripe.

To use mathematical Design Theory (from finite mathe-
matics), we call each data disklet an element and the set
of data disklets in a reliability group a block. Each parity
disklet corresponds to exactly one block, namely the parity
is calculated for the group of disklets in the block. A two-
(disklet)-failure tolerant layout consists of elements organized

a
b

u t

c
4

2

3
1

Fig. 2: Failure pattern.

into blocks such that:
(1) Each element is in exactly two blocks.
(2) Each block contains exactly n elements.
(3) Two different elements are in at most one block.
These properties define a configuration [9]. We can obtain ad-
ditional insight by passing to the dual design, where the blocks
of the dual correspond to the elements of the primary design,
the elements of the dual to the blocks of the primary, and
where the “is an element of” relationship between elements
and blocks is reversed. In the dual, the elements are reliability
stripes (represented by the parity disklets), the blocks are data
disklets, and a dual element (parity disklet) belongs to a block
(data disklet) if the data disklet is part of the reliability stripe
that stores its parity in the parity disklet. As each data disklet
is in exactly two reliability stripes, the dual is a graph. Since
each parity disklet stores the parity of n data disklets, the dual
is n-regular (i.e., the node degree of the graph is n). Fig. 1
right gives the dual of the design on the left. For example,
the reliability stripe consisting of data disklets {3,7,11,15}
stores its parity on disklet g. Data disklet 7 is also in stripe
{5,6,7,8} with parity in b, therefore, in the dual, 7 is an edge
between b and g.

Conversely, given an n-regular graph, we obtain the dual
disklet array layout by adopting the following rules:
(1) Each vertex corresponds to a parity disklet.
(2) Each edge corresponds to a data disklet.
(3) The parity disklet contains the XOR of all data on disklets
adjoining it.
Graph theory knows of many families of n-regular graphs.

Disklets need to be housed in real disks. We represent this
by coloring the edges and vertices of the graph with the disk
number. Integration of new disks, removal of obsolete disks,
and data recovery after failure force us to change the disklet
layout. These changes are represented by manipulations in the
graph. If we introduce a new parity disklet, we add a vertex
to the graph. If we introduce a new data disklet, we add an
isolated edge to the graph. To attach this edge, corresponding
to disklet i with data Di to a parity disklet a with content Pa
we need to calculate Pa := Pa⊕Di. To detach disklet i from
parity disklet a, we also calculate Pa := Pa ⊕Di. Removing
parity disklets does not change data on other disklets.

B. Failure Tolerance Representation

Arguments about failure tolerance are much easier in the
graph than in the original primary design, as was previously
observed [10]. Disk and sector failure induce a failure pattern
in the graph, i.e., the set of the now unavailable disklets. Fig. 2

Fig. 3: Minimal irreducible failure patterns.

gives an example where three failed parity disklets (vertices)
and four failed data disklets (edges) are marked. Often, we
can reconstruct unavailable disklets, which means calculating
the lost data and placing them on a replacement disklet stored
elsewhere. The graph representation only indicates this process
by coloring with a different disk color and unmarking the
disklet.

Data on a lost parity disklet is recovered by accessing all
data disklets in the same reliability stripe and recalculating
the parity. Thus, we can unmark a failed vertex if none of
the adjacent edges is marked. Data on a data disklet can be
recovered from all other disklets in the same reliability stripe.
Thus, we can unmark a failed edge if one of its adjacent
vertices and all other edges adjacent to that vertex are not
marked. Edge 1 in Fig. 2 fullfills this condition with regards
to both vertices, but edge 2 solely at vertex t. Vertex a can
also be immediately recovered. Data recovery often has to be
iterative. We can immediately recover a, 1, and 2, but only
after recovering 2 can we recover 3. After this, we are stuck,
since we cannot make progress for the remaining b, c, and 4.
Thus, Fig. 2 represents a situation where we have lost data.
We call this process of unmarking recoverable items failure
pattern reduction.

A simple linear algorithm for failure pattern reduction
anotates marked edges and vertices with positive numbers. A
marked vertex gets the number of marked, adjacent edges and
a colored edge (x,y) receives two numbers, fx and fy. If x
is marked, then fx is the number of adjacent marked edges,
otherwise it is that number minus 1. Analogously for fy. For
example, edge 3 has fu = 1 and fb = 2. We can unmark if
one of these numbers is zero. In this case, adjacent edges and
vertices change their number.

Not all failure patterns are reducible. These irreducible
failure patterns describe instances of data loss. For an edge to
be part of an irreducible failure pattern, either the end-vertices
also failed, or at least one of the adjoining edges has also
failed, or both. Therefore, minimal irreducible failure patterns
are either a chain, Fig. 3 left, or a cycle, Fig. 3 right. The chain
is a walk starting and ending at a failed vertex connected with
failed edges in between. The cycle is an edge cycle in the
sense of graph theory. The smallest minimal failure patterns
are the bar-bell (Fig. 3, lower left), and the triangle (Fig. 3,
lower right).

C. Good Disklet Layouts

The number n of data disklets per reliability stripe de-
termines the parity storage overhead and the recovery load.
The storage overhead (amount of parity data divided by the
amount of client data) is 2/n as each data disklet is part of
two reliability stripes. As we assume a large storage system

Fig. 4: Grid graph without and with failure pattern.

with Flash / SCM components, we can assume that the cost
of maintaining parity is low. Recovering data stored on a lost
disklet involves reading n and writing one disklet. The choice
of n offers therefore a trade-off between parity overhead and
reconstruction load. Smaller reconstruction load can lead to
faster recovery and therefore to higher reliability. We can gain
flexibility by allowing the parameter n to vary slightly between
reliability stripes. In the graph, this corresponds to an “almost
regular” graph where the number of edges connected to a
vertex is not constant, but varies slightly.

Since several disklets are located on the same disk, a disk
failure results in the loss of a number of disklets. When we use
a good disklet-to-disk assignment (to be discussed shortly), a
double disk failure will not cause data to be lost. However, an
adversary can always choose three disks to fail so that data
loss occurs. We want to minimize the possibility that three
disk failures (or more) result in the occurrence of either the
barbell or the triangle. We cannot prevent the former, but we
can avoid triangles through the shape of the graph.

To create a good initial disklet layout, we therefore choose
an n-regular graph without triangles. Among the many pos-
sibilities, we can select subgraphs of a grid graph. The grid
graph has for vertices the points Nr with integer coefficients in
the r-dimensional Euclidean space. The edges are defined to be
the lines of length 1 between these points. The edges therefore
only connect vertices that differ in only one coordinate, and in
that coordinate by one. The results is an r-dimensional grid.

After choosing the graph, we select a finite region, for
example defined by a square box consisting of vertices with
coordinates less than a given l. We then assign disklets to
the vertices in the box, these will become the parity disklets.
Afterwards, we assign data disklets to the edges. The subgraph
is not regular. An interior vertex has degree 2r, but one
of the 2r corner vertices has only degree r. To make the
graph regular, we connect vertices on the boundary to its
diametrically opposed counter-vertex. In fact, we can avoid
this last operation because it complicates growing the graph
(necessary if the disk array increases in size). The vertices
with fewer edges correspond to reliability stripes with fewer
data disklets and cause higher parity overhead, but since most
of the vertices are interior (for a disk array of substantial
size), the overall loss is easy to tolerate. In general, we do
not need to assign all disklets in an array at the same time.
In this case, we can postpone the decision of having a regular
graph or an almost regular graph until we are either about to
run out of space (in which case we assign data disklets to
the edges between diametrically opposite vertices) or about

1
2

1

22
1

Fig. 5: Beginning of restructuring after failure.

to incorporate new disks (in which case we want to grow the
array). Finally, the subgraph does not have to be a square box,
but can be rectangular.

D. Disklet to Disk Assignment

A disklet layout is defined by an (almost) n-regular graph.
We represent the assignment of disklets to disks by coloring
the element (vertex or edge) with a color representing the disk.
Not every coloring will do, as otherwise a single disk failure
might lead to data loss. We color elements with the same color
(i.e., collocate disklets on the same disk) if they are apart from
each other in the graph. We now discuss our notion of distance.

We use the notion of walks in graphs. A walk is a sequence
of alternating edges and vertices that are adjacent to each other.
Graph theory defines the length of a walk to be the number
of edges contained in it, but we use here a different measure,
namely the number of elements in a walk minus one. In Fig. 2,
the sequence t, 2, u, 3, b, 4, c is therefore a walk of length
six. We define the walking distance between two elements as
the length of a minimal walk (in our sense) connecting them.
Elements in an irreducible failure pattern have to be at walking
distance from each other. Consequently, if elements colored
with the same disk are at least at walking distance two, then
no two disk failures can lead to data loss. Coloring the graph
subject to this restriction is fairly simple because of the large
number of colors (disks).

E. Restructuring after Failure

Assume that a number of disks have failed simultaneously
and that recovery operations or scrubbing has led to the
discovery of a number of disklets with latent sector errors.
As a result, our graph now has some failed elements. Fig. 4
gives an example. To the left, we show the grid graph used.
The graph is two-dimensional and the interior vertices have
edge degree of only 4 corresponding to reliability stripes of
size 4+1. In reality, we would use a grid of higher dimension.
To the right, we show the effect of a disk failure combined
with latent sector failures.

To recover from failure, we reconstruct data and have to
place them in disklets on disks. If we have empty disklets, then
the reconstructed data can be placed on some of these disklets.
However, this placement recolors the graph and we have to
take care that our rule against a minimal walking distance

between two elements with the same color is preserved. If we
cannot avoid a violation by assigning reconstructed disklets to
disks, then we pick two disklets and interchange their location
(This is not a small operation as disklets are tens of GB in
size).

An additional problem arises if there are no free disklets
to store reconstructed data. While this occurs rarely (most
storage systems are not left to reach full capacity), we need to
handle this case. We do so by reorganizing as previously pro-
posed [11]. The idea is to restructure by enlarging reliability
stripes and thus freeing parity disklets for use as data disklets.
In the example of Fig. 5, we have three failed elements, but
have not suffered data loss. We need two spots to store the
data from the two failed data disklets. We pick randomly two
parity disklets and use them for this purpose. In our graph
representation, we now have several dangling edges, including
one that is not attached to any vertex. This corresponds to
a data disklet that does not contribute to any parity and is
therefore not protected against failure. We now attach dangling
edges to vertices. This corresponds to XORing the contents
of these data disklets to the parity disklets. Fig. 5 lower left
shows the result after reattaching two edges. There still remain
seven dangling edges to be reattached. The resulting graph is
not pretty, since it is now far from being regular and because
we cannot avoid triangles. However, as long as we preserve
the graph property, we are still protected against double disk
failure. Attaching dangling edges might also lead to violation
of the coloring rule that two elements of the same color not be
placed close together. In a small graph like this, it is difficult
to enforce this rule successfully, but in a graph representing
a petabyte-scale storage system, the sheer number of disks
means that using a simple greedy algorithm would be feasible.

F. Incorporating New Disks

New disks usually enter the system in large numbers, e.g.,
one or more racks full of disks needing to be incorporated. The
following strategies are possible. First, we can just configure
the new disks independently of the old ones. The resulting
graph then has at least two components, one of which is
colored only for the new disks. If a new disk fails, recovery
workload will be distributed over only the new disks. The
second strategy distributes the recovery workload over all disks
and incidentally addresses the problem of disk infant mortality.
However, the cost is a major reshuffle of data moving many
disklets from old disks to new ones.

The first strategy just adds a new component to the graph.
The second is represented by adding more edges and vertices
and recoloring some edges and vertices to represent the
copying of disklets from old disks to disklets on new disks. To
adjust the number of disklets, we increase the box that defined
the grid graph. Depending on how we dealt with lack of
regularity, this might imply detaching edges on the boundary
of the box. Detaching an edge means removing a data disklet
from a parity stripe. This is done by XORing the contents of
the data disklet and the contents of the parity disklet. Then, if
we move a disklet from the old part of the array to a disk in

TABLE I: Data loss rate and data loss probability after failure
of a rack and simultaneous, additional x disk failures (for 20
racks with 50 or 1000 disks, and 50 racks with 400 disks).

x 20 × 50 20 × 1000 50 × 400 disks
DLP DLR DLP DLR DLP DLR

1 0.02% 0.014% 10.76% 0.0005% 0.000% 0.0000%
2 0.32% 0.014% 20.32% 0.0005% 0.002% 0.0001%
3 1.00% 0.013% 29.02% 0.0006% 0.020% 0.0004%
4 2.08% 0.014% 36.82% 0.0006% 0.034% 0.0006%
5 3.67% 0.014% 43.55% 0.0006% 0.044% 0.0006%
10 15.95% 0.017% 68.51% 0.0008% 0.282% 0.0008%
20 58.75% 0.025% 90.49% 0.0012% 1.06% 0.0007%

the new part, we give it a new color, specifically the name of
the disk. Afterwards, we color the new edges and vertices in
the graph.

G. Removing Obsolete Disks

Disks leave the system because of failure (in which case
we can either recolor the corresponding disklets to disks that
remain in the system if the disks have space left for the
disklets, otherwise we have to reconfigure) or because they
have become obsolete. Data on obsolete disks would be moved
elsewhere in the storage system, possibly on replacement
disks. In the graph, this is once again expressed as recoloring.

H. Reconfiguring for Energy Savings and Load Balancing

The load of a disklet depends on the data it contains.
By swapping disklets between disks, we can achieve load
balancing or congregate low demand disklets on disks that can
be turned off, without changing the resilience of the disk array.
If we can identify disklets with read-only data, we can also use
swapping and rearranging of reliability stripes to have parity
disklets that have no load. Such disklets can also be placed
on disks to be powered off.

III. SYSTEM DESIGN

Our representation / management approach applies to all
large storage systems and presupposes only the capability to
maintain a large graph and run greedy algorithms on that
graph. This is certainly the case if we have a metadata server,
which would also be needed to implement search functionality
over the large amount of data and to manage the relationship
between a potential first level storage system using solid state
disks and our disk-based system.

To the clients, our storage system gives the abstraction of
small, but highly reliable virtual disks, formed of the disklets.
While any such abstraction can result in less complete use of
the available storage capacity, it does facilitate energy savings
by turning off disks needed only by dormant clients, and it
should also increase spatial locality. The scheme is similar
to the extents used in database systems to administer large
amounts of storage space.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We started implementing algorithms based on our graph
representation. We implemented the initial disklet layout for
a system comprised of homogeneous racks containing disks
with 10 disklets each. We used a layout where 8 data disklets

TABLE II: Probability of data loss in an array with N disks and x failures.
N x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10

200 0.362% 1.154% 2.266% 4.248% 7.020% 10.562% 15.518% 21.458%
500 0.048% 0.130% 0.346% 0.676% 0.936% 1.480% 2.264% 3.304%

1000 0.020% 0.034% 0.092% 0.158% 0.260% 0.468% 0.616% 0.768%
1500 0.008% 0.022% 0.044% 0.082% 0.134% 0.160% 0.298% 0.354%
2000 0.004% 0.022% 0.022% 0.022% 0.044% 0.082% 0.134% 0.160%
5000 0.002% 0.002% 0.004% 0.014% 0.008% 0.010% 0.012% 0.050%

10000 0.000% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.010%
15000 0.000% 0.000% 0.002% 0.002% 0.000% 0.002% 0.000% 0.004%
20000 0.000% 0.000% 0.000% 0.002% 0.002% 0.000% 0.000% 0.002%

!"#"$%&'()"*"&(%'$&

+,"#"-%((((

'----

&----

.----

/----

0----

!
"#
$%
&'
(
)
*+
',

#
*-
,
./

01234*526(%&*#"#$%&'()*&',#

-

$----

'----

- $---- '---- &---- .----

!
"#
$%
&'
(
)
*+
',

#
*-
,
./

7*(8*9'.:.

Fig. 6: Execution times for initial graph layout.

form a reliability stripe with one additional parity disklet. The
execution times for this initial data layout depended linearly
on the number of disks (1.329 ms per disk), but not on the
number of racks. Accordingly, this (one-time) task can be done
in less than a minute for an array with 20000 disks (Figure 6).

Our layouts do not suffer data loss from any double failure,
whether rack, disk, or sector, with the exception of two
rack failures, but any combination of three failures can lead
to data loss. We have to measure resilience carefully. An
experiment repeated multiple times will have a bad outcome
with probability arbitrarily close to one, if we only repeat it
enough times. Similarly, if we increase the number of disklets
per disk, then any combination of more than two disk failures
will, with high probability, result in data loss. We have to
measure the robustness of a layout not only by the probability
of data loss given a certain combination of failures, but also
by the expected rate of data loss.

Our first experiment simulated the robustness of the disk
array right after the failure of a whole rack. The results,
in Table I give the Data Loss Rate (DLR) and Data Loss
Probability (DLP) using 10 disklets per disk. The DLR is
very good, given that a rack constitutes 1/20 or 1/50 of all
disks in the array. The DLP is high with few racks. In our
second experiment (Table II) we observed good robustness of
our layout using again with 10 disklets per disk. We do not
give DLR because we usually only lose one data disklet if
we lose data at all. At worst, we lose 1.68 data disklets on
average after 10 disk failures out of a total of only 200. When
we varied the number of disklets, we observed a slightly lower
DLR coupled with a much increased DLP.

V. CONCLUSIONS AND FUTURE WORK

We have presented a representation for a storage system
with two failure tolerance based on flat XOR codes. We argue
that this representation allows us to implement fast algorithm
for the layout of very large, evolving disk arrays.

Much needs to be done. Fast, but efficient algorithms for
major changes in the disk array such as rack failure or insertion
of new disks still need to be implemented and tested. Our goal
is usually not to find an optimal layout (in a sense to be defined
precisely), but one that is close to optimal. To assert that our
algorithms perform at this level involves a more mathematical
analysis of the consequences of failures in such an array to
derive bounds on the robustness of optimal layouts, a task we
have barely started. Nevertheless, the results we have indicate
that the algorithms are quite effective and certainly fast and
easy to implement. This presents definite progress over the true
optimization (including looking for proven optimal designs)
that can be done only for special, small cases and supports
our pragmatic attitude.

REFERENCES

[1] E. Pinheiro, W. Weber, and L. Barroso, “Failure trends in a large disk
drive population,” in Proc. 5th USENIX FAST Conf., 2007.

[2] B. Schroeder and G. Gibson, “Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean to you?” in Proc. 5th USENIX FAST
Conf., 2007.

[3] L. Bairavasundaram, G. Goodson, S. Pasupathy, and J. Schindler, “An
analysis of latent sector errors in disk drives,” in ACM SIGMETRICS,
2007.

[4] I. Iliadis, R. Haas, X. Hu, and E. Eleftheriou, “Disk scrubbing versus
intra-disk redundancy for high-reliability raid storage systems,” in ACM
SIGMETRICS, 2008.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, pp. 192–202, 1995.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
Proc. 3rd USENIX FAST Conf., 2004.

[7] K. Greenan, X. Li, and J. Wylie, “Flat XOR-based erasure codes in
storage systems: Constructions, efficient recovery, and tradeoffs,” in
Proc. IEEE MSST, 2010.

[8] L. Hellerstein, G. Gibson, R. Karp, R. Katz, and D. Patterson, “Coding
techniques for handling failures in large disk arrays,” Algorithmica,
vol. 12, no. 2, pp. 182–208, 1994.

[9] H. Gropp, “Configurations,” in The CRC Handbook of Combinatorial
Designs, C. Cobourn and J. Dinitz, Eds. CRC Press, 1996.

[10] Z. Jie, W. Gang, L. Xiaogugang, and L. Jing, “The study of graph
decompositions and placement of parity and data to tolerate two failures
in disk arrays: Conditions and existence,” Chinese Journal of Computers,
vol. 26, no. 10, pp. 1379–1386, 2003.

[11] J.-F. Pâris, T. Schwarz, and D. Long, “Self-Adaptive Two-Dimensional
RAID Arrays,” in Proc. IEEE IPCCC, 2007.

