RAID Organization and Performance

*

Thomas J.E. Schwarz and Walter A. Burkhard

Gemini Storage Systems Laboratory
University of California at San Diego

La Jolla, California 92093-0114

Abstract

We present and analyze a novel disk array architec-
ture that generalizes the RAID Level V data organi-
zation while providing excellent storage utilization, re-
sponse times, and fault tolerance. A key feature of our
approach is that reliability groups can contain several
check data disks beyond the single parity disk.

Introduction

Redundant arrays of inexpensive disks (RAIDs), intro-
duced by Patterson, Gibson and Katz [9] and further
studied by Chen, Menon and Mattson, Muntz and Lui,
[2] [4] [7] [8], achieve tolerance for a single disk failure
by introducing redundancy. Previous work regarding
RAIDs has been concerned with the cost and run-time
performance for both realistic and synthesized work-
loads for rather small arrays.

We introduce a generalization of the five level
RAID organization that accommodates multiple fail-
ures within reliability groups while retaining its excel-
lent storage utilization, response time, and fault re-
covery properties. These schemes constitute a step to-
wards the high-availability computer systems recently
advocated by Gray and Siewiorek [5].

We are concerned with exploring the performance
improvements that are available within very large disk
arrays. We will consider workloads featuring opera-
tions that involve a small quantity of data typical of
database transactions. We are interested in considering
the run-time effects of various consistency schemes and
we analyze a strong synchronization scheme, a write re-
jection scheme and a no-synchronization scheme. Our
model differs in many ways from those previously con-
sidered by Chen, Gibson, Katz and Patterson [2]. We
consider very large disk arrays and assume a workload
without locality in which each request manipulates a

*This study supported in part by the NCR Corporation, Day-
ton, Ohio and Rancho Bernardo, California and the University

of California MICRO Program.

small quantity of data. We assume a heterogeneous
mix of independent users. Chen et al. consider small
disk arrays operating, with non-independent requests,
under strong operating system control. We report gen-
eral analytic results applicable to both varieties of disk
arrays.

The paper is structured as follows. In Section I we
introduce RAID organizations that we relate to maxi-
mum distance separable (MDS) error-correcting codes
[6]. We discuss data placement and three consistency
schemes. In sections 2, 3, and 4 we present our RAID
response time results for fault-free operation. Some
simulation results are presented as well. In section 5
we present some results regarding response times dur-
ing failure recovery operations. Within section 6, we
recapitulate our results and comment regarding work
in the future.

1 RAID Organization

RAIDs achieve fault tolerance by introducing redun-
dancy into the system. The RAID organization stores
data systematically with parity data on an additional
disk. In the most advanced organizations, the parity
data is distributed evenly throughout the constituent
disks. In this RAID organization, each write operation
must update the message and associated parity data.
The new parity data is the exclusive-or of the old parity
data with the exclusive-or of the new and old message.
Read operations are accommodated by directly access-
ing the desired message data. When a disk fails, the
exclusive-or of the associated remaining disks recon-
structs the desired data. Message and parity data are
symmetric under this recovery operation.

Classic RAID organizations view the bits at the
same relative positions in each disk as forming a code-
word in an algebraic error-correcting block code. To
be useful within a RAID, the code must be systematic,
that is codewords must be uniformly structured with

identifiable message and check bits. Then when a mes-
sage bit changes only the parity disk need be updated
as well.

A reliability or parity group within a RAID is a fault
tolerant ensemble of message disks and a single parity
disk. If one disk is unaccessible, its contents can be re-
constructed from the contents of the other disks. The
reliability groups of a RAID refine its structure and the
groups need not be disjoint. We have shown that the
check bit of a reliability group is (up to negation) nec-
essarily the parity of the message disks. Accordingly
additional check bits provide no new check informa-
tion.

By changing the granularity of the stored data and
basing the codes on bytes instead of bits, the ensemble
of useful error-correcting codes is significantly enlarged
to include the maximum distance separable (MDS)
codes. The best known variety of these codes are
the (twice extended) Reed-Solomon codes, which are
widely used in more traditional applications of error-
correcting codes. A reliability group now consists of m
message disks with ¢ additional check disks and pro-
vides a fault tolerant ensemble of disks. These reliabil-
ity groups can withstand ¢ failed disks without losing
any data. Its entire contents can be reconstructed us-
ing the data on any combination of m message and
check disks. The data on message disks are stored sys-
tematically in unencoded form. The check data can be
calculated as a linear form of the message data. As
with the traditional parity reliability groups, during
a write operation, the difference between the previous
and new contents of the message disk as well as the
previous contents of the check disk suffice using sim-
ple algebraic operations determine the new check disk
data.

Assume we wish to construct a reliability group that
contains m message disks and n — m check disks. A
generator matrix (G, defined below, maps m message
symbols p; to n codeword symbols ¢; as follows:

o Pm)G = (e1,ca, .. ey Cn1,Cn).

(p11p21" 3 Cmy Cm+1, -

Each codeword symbol ¢; will be stored on a different
disk. We require the resulting code be systematic; that
is, ¢; = p; for 1 < ¢ < m and m message disks con-
tain the message symbols in unencoded form. Within
the reliability group, we require that any m codeword
symbols suffice to determine the remaining n —m sym-
bols of the codeword. This property can be phrased
in terms of solutions of m linear equations with m un-
knowns. Accordingly the m X n generator matrix G
must have the property that any set of m columns are
linearly independent. We refer to this as the indepen-

dence property. Such generator matrices are charac-
teristic of Reed-Solomon codes. For the remainder of
this paper, we only consider RAID disk array organiza-
tions derived from m x n generator matrices satisfying
the independence property with the following general
form: G =

1 0 0 ... 0 Q1 m41 Q1 m42 [e5)
01 0 ... 0 Q2 m41 A2 m42 . a2 n
0 0 1 ... 0 &3 m41 A3 m42 . a3 n
00 0 ... 1T ammti %mmt2 --- mn

The m X m identity matrix on the left of G provides
the systematic property. These matrices can be ob-
tained through elementary matrix transformations on
Vandermonde matrices. The matrices and codes are
defined over the Galois field GF(2%); accordingly the
code symbol size and byte size are identical. The dif-
ference n — m specifies the number of failed disks tol-
erated concurrently within the reliability group. The
ratio n/m measures the storage efficiency of the group.

The systematic and independence conditions we
discussed in the previous paragraph are rather stan-
dard; the independence property is also required by
Rabin [11] for his Information Dispersal Algorithm.
Preparata has also noted the utility of MDS codes in
this context; he also provides a different approach [10].

Within classic RAID organizations the check bit of
a redundancy group is (up to negation) necessarily the
parity of the message disks. Additional check disks can
only provide the same check data. Our organizations
have no such constraint. However there is a limita-
tion is on the size of a reliability group which cannot
exceed one plus the size of the underlying field. Our
reliability groups contain at most 257 disks; reliabil-
ity groups of this size or less seem to be practical for
current technologies.

As a very small example suppose we desire a relia-
bility group that contains two message disks and two
check disks. Our generator matrix could be

10 1 1
G= (0 11 2)
Codewords for a file stored using this scheme are gen-
erated using contiguous message symbols (bytes) from
the file. Assuming the file F' contains ag, a1, as, as, - - -
then the four disks D, Ds, D3, and D4 will contain
the following values
Dyt ag,az,a4,as, - -

Dy :ay,a3,as,a7,- -
D3 :ag+ay,as+as,as+as, a6 +az,---

Dy:ag+2-a1,a94+2-as,a4+2-as,a6+2-az,---
We can reconstruct the contents of F' from the contents
of any pair of disks. Any pair of symbols at identical
locations within their files constitute half a codeword
and this suffices to determine the other portion of the
codeword. Continuing our example, suppose we have
access to the contents of D3 and D4. The reconstruc-
tion of F' is accomplished by first constructing the in-
verse matrix R34 for columns three and four of G

oo L(2 1y _ (11 -
347381 1) \1 2
in which we have utilized the exclusive-or addition of

GF(2%). The individual reconstruction computations
are for 1 =0,1,2, ...

(azi + azit1, a2+ 2 - (122'+1)R3,4 = (a2, azi41).
Each pair of symbols from the same locations within
D3 and D, determines a pair of message symbols. If
a RAID contains dedicated check and message disks,
one or the other tend to become a bottleneck. If a disk
fails, the disks in the same reliability group become
bottlenecks of the RAID performance. Both problems
are solved with address hashing. Hashing distributes
both the check and message data evenly throughout
the array. Hashing inside the resilience group is the
distinguishing feature of Level V. RAIDs while hash-
ing throughout the disk array has been proposed and
investigated by Muntz and Lui[§].

Since the RAID write operations involve more than
one disk, maintaining consistency among related disk
blocks becomes important. We will investigate three
consistency schemes: strong synchronization, write-
restart and no-synchronization. Within the strong syn-
chronization scheme, each physical write is preceeded
by the acquisition of a lock which is not released until
the operation is completed. The RAID design has to
prevent the possibility of deadlock within the scheme.
The write-restart scheme coordinates individual physi-
cal write operations by not initiating a write operation
unless each physical write operation can begin immedi-
ately. Thus a write can only proceed if all the required
disks are idle. This scheme presents the small possibil-
ity of starvation [12] which we ignore here. Finally the
third scheme sacrifices safety for performance. Check
disks are accessed only after the information block has
been read. The elapsed time between the first and
the last physical write operation can be considerably
longer than for the other two schemes. A system crash
renders more check data inconsistent and the clean-
up operation after a crash becomes more complicated.
The nature of our data organization makes it possible

to update check disks in any order, provided each disk
write operation is executed locally exactly once.

The new data organization presented here has ex-
cellent fault tolerance characteristics; initial data avail-
ability calculations indicate with even very poor qual-
ity disks (20,000 hour mttf,) we obtain 10° year mean
time to data loss for small arrays [1].

2 Strong Synchronization

We assume a disk array with a large number of
disks and that hashing uniformly distributes the load
throughout the array. The message and check disks for
any reliability group can reside on any disk within the
array. We also assume the service times for reads and
writes are exponentially distributed. We assume the
request arrivals to be Poisson distributed. This leads
to reasonably conservative performance bounds on the
system.

A read operation is very straightforward provided
no failures have occurred. A single message disk is
accessed. We discuss failure operation in Section V.

We now describe an update operation. For ease
of presentation in this section we assume that logical
writes involve two disks: the message and check disk.
Figure 1 contains a graphic representation of a typical
sequence of actions. The operation requires synchro-
nization between the message disk and the check disk.
When a request arrives, it is placed in a queue at both
disks. The two disks begin servicing the operation in-
dependently each as soon as possible. We describe the
operation of the disks with special notice for the two
synchronization signals from the check disk to the mes-
sage disk. The message disk determines the difference
A between the old and new data blocks. The A value
is sent to the check disk when it is ready to receive the
value. The check disk must send a A-ok signal to the
information disk as the indication that it can receive
the A value. The check disk also sends the commit-ok
signal when it has read the old check value. The magni-
tude of the difference between the times of the A value
and the commit-ok signals is the so-called synchroniza-
tion time; this time reflects waiting time for one of the
two disks. Figure 1 show the message disk waiting for
the check disk; the check disk could be waiting just as
well.

The message disk begins servicing the operation by
initiating the seek of the old information data block
as well as the (parallel) transfer of the new message
data block to a disk buffer. The difference A between
the old and new message values is determined. The

A value is sent to the check disk if the check disk is
ready to accept it, otherwise the information disk be-
gins “waiting.” When the check disk begins servicing
the request, the A-ok signal is sent immediately. After
the old check data block has been read, the commit-ok
signal is send immediately. When the A value is re-
ceived by the check disk and it has sent the commit-ok
signal, both disks write their new data blocks. The
check disk must do some simple arithmetic operations
on the A and old check data block to determine the
new check data block before writing it. The release
times for information and check disks are not neces-
sarily identical, but the expected time remaining for
either is two rotational latencies.

We introduce some terminalogy for our model. The
time a disk is busy servicing the request we designate
as I and reference as the internal service ttme. This
time excludes the time spent waiting for the other disk
to react that we have referred to as the synchroniza-
tion time. We refer to the total time starting with the
service of a request at one disk until this disk is re-
leased the ezxternal service time D which is the sum of
the internal service time and the synchronization time.
Similarly we refer to the time from the request recep-
tion by the RAID to the release of the disks the external
response time of the request; this includes the internal
service time, the synchronization time, and the waiting
in queue time and is designated R.

2.1 A Queueing Network Approximation

We obtain the response times for read and write opera-
tions as response times within a two-population-queue
at a single service device. The external service times
are D, and D, respectively. The service device has
utility U = A, D, + Ay Dy, . With probability U”(1-U),
there are exactly v queued clients ahead of any arriving
client. The device is busy with probability u, def Ar D,
with a reader client and with probability u, def Aw Dw
with a writer client. An unknown client will require
external service time D = Dy + Dy Accordingly
the read external response time is given by

R, = Dr+D(1-U)> vU*
v=1
Dr + /\wa(Dw - Dr)

1-U
Similarly, for the write external response time we have

Ry, = Dy+D(1-U)Y vU"

v=1

Dw + /\rDr(Dr - Dw)
1-U '

Now we determine the external service times. Since
reader operations involve only a single disk, D, is a
fraction « of the internal write service time /. We are
left with the interesting question of the external write
service time D,,. Our principal result within this Sec-
tion is the determination of the synchronization time
for the write operation with write quorum z; it is the
following

(Hy — D)(Ry — Dy + 1)

where H, is the z!2 harmonic number [13] .
ingly the external service times are given by

Accord-

D, = ol
D, Hyl+ (Hy; — 1)(Ry — Dy)

We present in Figure 2 response time results for three
disk array configurations each with 100 message disks
derived from these equations; the first is a single reli-
ability group consisting of 102 disks, the second con-
sists of five disjoint groups each with 22 disks, and
the third contains ten reliability groups each with 12
disks. The solid curves designate fault-free operation
response times. The The write quorum x is three for
each array. The fraction of read operation p is 0.5.
These curves demonstrate a singularity; the associ-
ated utility is much smaller than one. This behavior
is an essential feature of our model. The D,, equation
is quadratic and can be solved only for small loads. In
particular, if A, is zero, we obtain the following

(HpIAy + 1) = /(HoIhy + 1)2 — 4H21X,

D, =
220 Hy

And this equation has a solution provided

o 2H,—1—2/H(H, — 1
)\w S Ama([f = ()'

- H,1

This contrasts with the load of A,, = 1/ if the theoret-
ically maximum achievable throughput is obtained. As
an example, suppose that write operations have a write
quorum of two and I is 20 ms. Then A, < 0.1786/20
and as the load approaches this critical value from
below, the utilization does not go to one; rather it
goes to 0.42. We have no analytic results for loads
exceeding this critical value. Simulation results, pre-
sented in Figure 3, model our “write-only” scenario.
The service time is Poisson distributed which is a non-
continuous version of an exponentially distributed ser-
vice time with expectation of 20 ms. We plot the ex-
ternal response time R versus system arrival rate A for

a RAID with 100 disks and a write quorum of two.
The maximum disk load A,.x = .1786/20 = 0.00893;
accordingly the maximum system arrival rate A4, =
0.00893 x50 = 0.4465. The simulation results presented
within Figure 3, have a very sharp knee at approxi-
mately A,qz. We present additional simulation results
that demonstrate the same qualitative behavior. The
service time used has constant plus uniform compo-
nents. Increasing the write quorum z decreases the
critical value here as well.

3 Write-Restart Synchronization

The disappointing performance figures of strong syn-
chronization result due to the synchronization required
among the participating disks. The response times re-
flect the time of the slowest participant. The write-
restart synchronization scheme provides much better
response time performance. Here the write operation
can proceed only if all participating disks are idle. The
write requests need not be executed in arrival order but
the synchronization scheme itself does not provide any
scheduling optimization. As we have noted there is a
small probability of starvation which can be thwarted
within the implementation. Once a logical operation
begins, it continues without interruption to comple-
tion.

Our analysis of the response times proceeds much
as within the previous section beginning with the same
assumptions. The read external response time R, is,
as in section 2,

Dr + /\wa(Dw - Dr)

B = 1-U

The read external service time D, is a fraction « of
the write internal service time I as before. Since all
disks among an operation begin together and individ-
ual write internal service times are exponentially dis-
tributed, the write external service time D,, would be
H.I. However we can provide a sharper estimate for
D, . For a single disk, approximately one-half of the
internal service time I is spent seeking and rotating be-
fore the data is read, and the remainder of the time is
spent during the full rotation of the update phase. We
assume that only the initial seek and rotation times are
exponentially distributed yielding D,, = %(Hx + 1)1
The write external response time R, expression grows
in complexity with the write quorum; it is composed
of the write internal service time plus the time spent
waiting for clients ahead to clear. We develop the ex-
ternal write response time for disk arrays having write

quorum two. The probability of finding at least one
disk of a pair busy is P ey (1 —U)?. The expected
service time Ds measuring the busy time of at least
one of a pair of disks is

2Up Uy,

UZ u2
— Dr;Dr Dr:Dw —= Dw;Dw
=(Dr, D) + =5 [Dr, Dy] + —2[Dy, D,

2ur (1 — up — uy) 2y (1 — up — uy)
D,
P + P

where [D,,D,], [D.,Dy], and [D,,D,] are order
statistics for the maximum of two specified service
times. We can estimate [D,, D,] as 1.3D, rather than
%D,«, [Dw, Dy] as approximately Dy, and [D,,, Dy] as
1.05Dy,. The formulafor larger write quora will be sim-
ilar. Finally

Dy,

_ >, DyP
Ry, = Dy+Dy(1-P)>Y vP =Dy + 15

v=1

We present write-restart response time results
within Figure 4 for write quorum three. This write
quorum will facilitate comparison with the results for
strong synchronization given within Figure 2. The
fraction of read operations p is 0.5. The behavior is
familiar. The write response time for zero load is lower
than for either strong- or no-synchronization because
of our improved D,, value. The write-restart scheme
is operational for any utility less than one unlike the
strong scheme.

4 No Synchronization

We have studied the performance of disk arrays in
which the risk of inconsistencies resulting from a write
operation is limited by synchronization among the par-
ticipating disks. In this section we assume a different
strategy. Either the risk is ignored or during each up-
date a log of the various phases of the operation is
maintained throughout the lifetime of the operation.
We make the same assumptions regarding input arrival
rate and service times as within section 2 and we as-
sume that any risk aversion measures do not introduce
a performance bottleneck.

A read operation accesses a single disk and a write
operation accesses z disks according to the write quo-
rum. A write operation at an message disk consists of
seek and rotate, a full rotation commencing with read-
ing the block, and a transfer when new data is stored
on the disk. A write operation at a check disk con-
sists of one disk access to read the check disk followed
by a write that follows the read of the message disk.

The check disk accesses of a write operation are ini-
tiated only after the message disk has been read. In
this strategy the write service time at both message
and check disks D,, coincides with the internal service
time I of Section II. The read service time D, is smaller
by a full rotation which we estimate as 1.

2
The read response time is, as in section 2,

Dr + /\wa(Dw - Dr)
1-U '

R, =

The write response time, with write quorum x, consists
of the time to read from the message disk followed by
the write response time for # — 1 check disks. Thus

Dr+>\wa Dw _Dr
h = (BEADBoDY,
Dw +)\rDr Dr - Dw
oy (Lot et = D)),

We present response time results for both read and
write operations within Figure 5. The fraction of read
operations p is 0.5 again. The write quorum is three for
each disk array. Once again the operations are access-
able for any utility less than one. This scheme with
no synchronization provides response times that are
only incrementally better than the response time for
the write-restart synchronization scheme.

5 Fault Recovery

We discuss the performance of various recovery
schemes. Read operations involving a failed disk are
replaced by m other disk reads within the reliability
group. Write operations involving a failed disk depend
on its role. For a failed message disk, we first obtain
the contents of the message disk by reading m disks
and then we write the check disks. For a failed check
disk, we omit the portion of the update involving the
failed disk.

Consider a reliability group with write quorum z
and n disks that contains one failed disk. The total
“read” load A, 1s

n—1

ot o Pa- o+ By)

n
where the addends, from left to right, designate the
load for read operations not involving the failed disk,
the load incurred to accomodate the read at the failed
disk, the read required for write operations involving
the failed disk as the message disk and the write oper-
ation when the failed disk is a message disk. The last

addend contributes a “read load” since each check disk
is written without first reading it. The total “write”

load A, 1s

n—=x

i (xz — 1)2
- z(l—pA+ - (1 =p)A. (2)
The proportion of the write load not involving the
failed disk is (”;1)/(2) = =% accordingly the first
addend in this expression designates the total write
load not involving the the failed disk and the other ad-
dend designates the write load arising when the failed
disk is a check disk. We write to # — 1 disks for the
second addend.

Multiple disk failures are treated in exactly the same
manner. Assuming the number of failures is less than
n — m we can always recover the data. We have pre-
sented response times for single failures, derived from
equations 1 and 2, within Figures 2, 4 and 5.

Now we consider the use of stand-by disks; two ef-
fects change our perspective. First the reconstruction
process adds mA, to the total read load for reconstruc-
tion rate A.. Second the loads calculated above remain
valid only for the portion of the stand-by disk not al-
ready reconstructed. Otherwise the normal read and
write system loads apply. Let f(t) designate the frac-
tion of the blocks reconstructed on the stand-by disk
at time t¢; then our reconstruction rate is %. Now our
system load formulas are as follows:

= f)pA+ (1= fF()A +mA,

= O =pled+ (1= f(1) A
In a simple scheme % = A and f(t) = At; this
recovery scheme methodically rebuilds the stand-by
disk. The benefits of write redirection and read piggy-
backing depend on access locality. Let Z(t) designate
the total number of blocks accessed in the interval be-
tween time 0 and ¢; Z might reflect the 80-20 rule or
Zipf’s distribution. We obtain
df dz

— = A, 1—A4)—
dt +()i

>
g 3

F(0)=0

for the reconstruction rate.

6 Conclusions

We have introduced a useful extension to the RAID
Level V data organization that provides excellent fault
tolerance and response times. We present the analy-
sis results of three synchronization schemes for hashed
disk arrays. Several observations are noted for storage
systems designers.

Strong synchronization and increased numbers of
writes per RAID update adversely effects the run-time
performance of the system. However, both of these
factors improve the fault-tolerance of the ensemble.
The number of writes per update is the principal pro-
tection against almost simultaneous failure of a small
number of disks caused by environmental (temperature
extremes, earthquakes, electro-magnetic radiation) or
bad batch [3] (fungicide problem etc.) phenomena.

Stand-by disks provide excellent failure tolerance
against unrelated, individual disk failures. The reason
lies in the small amount of time to replace a failed disk
by a stand-by; it is very unlikely that another disk fail-
ure occurs during this replacement and in the flexibil-
ity of using pooled stand-bys to replace any failed disk
rather than simply expanding the reliability groups
with the increased number of writes per RAID up-
date (which would generally lower the run-time per-
formance.) An interesting research topic that remains
is how to accommodate non-independent disk failures
typical of essential component failure.

If the strong synchronization scheme is used, the
RAID performance could be improved by preventing
the build-up of requests at a single disk. This varia-
tion avoids blocking of writes at other disks. A similar
approach is used by Chen[2]. Write-restart synchro-
nization provides an excellent response times, almost
as good as with no synchronization.

References

[1] Walter A. Burkhard, Kimberly C. Claffy and
Thomas J.E. Schwarz. “Performance of Balanced
Disk Array Schemes,” Eleventh IEEE Symposium
on Mass Storage Digest, pp. 45-50, 1991.

[2] Peter M. Chen, Garth A. Gibson, Randy H. Katz
and David A. Patterson. “An Evaluation of Redun-
dant Arrays of Disks using an Amdahl 5890, Per-
formance Evaluation, pp. 74-85, 1990.

[3] Garth A. Gibson. “Reliability and Performance
in Redundant Arrays of Magnetic Disks,” Inter-
national Converence on Management and Perfor-
mance Evaluation of Computer Systems (CMG)
XX Proceedings, Computer Measurement Group,
December 1989.

[4] Garth A. Gibson, Lisa Hellerstein, Richard Karp,
Randy H. Katz and David A. Patterson. “Failure
Correction Techniques for Large Disk Arrays,” Pro-
ceedings of the Third International Conference on

Architectural Support of Programming Languages
and Operating Systems, pp.123-132, 1989.

[5] Jim Gray and Daniel P. Siewiorek. “High-
Availability Computer Systems,” COMPUTER,
pp- 39-48, 1991.

[6] Florence J. MacWilliams, Neil J.A. Sloane. The
Theory of Error-Correcting Codes, North Holland,
1978.

[7] Jai M. Menon and Richard L. Mattson. “Perfor-
mance of Disk Arrays in Transaction Processing
Environments,” Proceedings of the 12th Interna-
tional Conference on Distributed Computing Sys-
tems, 1992.

[8] Richard R. Muntz and John C.S. Lui. “Perfor-
mance Analysis of Disk Arrays under Failure,” Pro-

ceedings of the VLDB, pp. 162-173, 1990.

[9] David A. Patterson, Garth A. Gibson and Randy
H. Katz. “A Case for Redundant Arrays of Inex-
pensive Disks (RAID),” ACM SIGMOD Confer-
ence Proceedings, pp.109-116, 1988.

[10] Franco P. Preparata. “Holographic Dispersal and
Recovery of Information,” IEEFE Transactions on
Information Theory, Vol. 35, pp. 1123-1124, 1989.

[11] Michael O. Rabin. “Efficient Dispersal of Informa-
tion for Security, Load Balancing and Fault Toler-
ance,” Journal of the Association for Computing

Machinery, pp. 335-348, 1989.

[12] Daniel J. Rosenkrantz, Richard E. Stearns, Phil
M. Lewis, II. “System Level Consistency Control
for Distributed Database Systems,” ACM Trans-
actions on Database Systems, pp. 178-198, 1978.

[13] Thomas J.E. Schwarz and Walter A. Burkhard.
“RAID Performance via Queueing Network Analy-
sis,” Technical report, University of California, San

Diego, 1991.

1250

1254— ; H
Strong Synchronization
. constant + uniform service time
one-fault operation . o
exponential service time
normal operation
1001~ # 10 (10 message + 2 check disks) 10001—
M 5 (20 message + 2 check disks)
@ 100 message + 2 check disks
100 message +
1 check disks
75 7501
Response Response
Times ms Times ms f
501— 5001—
write quorum 3 ai
t
25 250 ‘ .
i RAID arrival rate A
RAID arrival rate A }
EEEERREES
|] | [|]]]
0.1 0.2 0.3 0.1 0.2 0.3 0.4 05 0.6
Figure 2. Strong Synchronization Figure 3. Simulation Results
1254— H H ; 1254— H ;
Write-Restart Synchronization No Synchronization
one-fault operation one-fault operation
normal operation normal operation
1001 4 10 (10 message + 2 check disks) 1001 4 10 (10 message + 2 check disks)
M 5 (20 message + 2 check disks) W 5 (20 message + 2 check disks)
@ 100 message + 2 check disks @ 100 message + 2 check disks
st 75
write quorum 3
Response a Response
Times ms Times ms
501—
write quorum 3
2 read F/—C/J/f_{‘/‘ 251~ read ,/—cg
—-’”___——ﬂ‘ﬂ‘f —-’”___——ﬂ‘ﬂ‘f
RAID arrival rate A RAID arrival rate A
| | | | | |
0.2 0.4 0.6 0.2 0.4 0.6

Figure 4. Write-Restart Synchronization

Figure 5. No Synchronization

operation
queued

MESSAGE DISK

,_internal service time | Wwaiting | is.t.
! time
queueing A A commit disks
time ok ok freed
/ ! ;/
internal service time (i.s.t.)
CHECK DISK

Figure 1: RAID Update Timing Example.

