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ABSTRACT 

We present a disk array organization that adapts itself to successive disk failures. When all disks are 

operational, all data are replicated on two disks.  Whenever a disk fails, the array reorganizes itself, by 

selecting a disk containing redundant data and replacing these data by their exclusive or (XOR) with the 

other copy of the data contained on the disk that failed.  This will protect the array against any single disk 

failure until the failed disk gets replaced and the array can revert to its original condition.  Hence data 

will remain protected against the successive failures of up to one half of the original number of disks, 

provided that no critical disk failure happens while the array is reorganizing itself.  As a result, our 

scheme achieves the same access times as a replicated organization under normal operational conditions 

while having a much lower likelihood of loosing data under abnormal conditions.   In addition it tolerates 

much longer repair times than static disk arrays/ 

Keywords: fault-tolerant systems, storage systems, repairable systems, k-out-of-n systems. 

1 INTRODUCTION 

Today’s disks have mean time to failures of more than ten years, which means that a given disk has a less 

than ten percent probability of failing during any given year of its useful lifetime.  While this reliability 

level is acceptable for all the applications that only require the storage of a few hundreds of gigabytes of 

non-critical information over relatively short time intervals, it does not satisfy the needs of applications 

having to store terabytes of data over many years. 

Backups have been the traditional way of protecting data against equipment failures.  

Unfortunately, they suffer from several important limitations.  First, they do not scale well; indeed the 

amount of time required to make a copy of a large data set can exceed the interval between daily 

backups. Second, the process is not as trustworthy as it should be due to both human error and the frailty 

of most recording media.  Finally, backup technologies are subject to technical obsolescence, which 

means that saved data risk becoming unreadable after only ten to twenty years.  A much better solution is 

to introduce redundancy into our storage systems 

The two primary ways of introducing that redundancy are replication and m-out-of-n codes.  Both 

techniques have their advantages and disadvantages.  Replication—also known as mirroring—offers the 
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Fig. 1.  A small disk array consisting of four pairs of disks with data replicated on each pair of disks. 

two main advantages of reducing read access times and having a reasonable update overhead.  Identifying 

failed disks can always be done by detecting which replicas have become unavailable.  On the other 

hand, m-out-of-n codes provide much higher data survivability.  Consider, for instance, the case of a 

small disk array consisting of eight disks.  A replicated organization that maintains two copies of each 

file on separate disks would protect data against all single disk failures and most double disk failures.  A 

simultaneous failure of three disks would have a bigger impact as it would result in data loss in 43 

percent of the cases.  This is much worse than an optimal 4-out-of-8 code as that code would protect data 

in the presence of up to four arbitrary disk failures.  In fact, this is such an improbable event that erasure 

codes tolerating more than two simultaneous failures are never used in actual storage systems. 

We propose a self-adaptive disk array organization that combines most advantages of both 

replication and erasure coding. As long as most disks are operational, it will provide the same read and 

write access times as a replicated organization.  Whenever a disk fails, it will reorganize itself and 

quickly return to a state where data are again protected against a single failure.  As a result, data will 

remain protected against the consecutive failures of up to one half of the original number of disks, 

provided that no critical disk failure happens while the array is reorganizing itself.  This is a rather 

unlikely event as the reorganization process will normally take less than a couple of hours. 

The remainder of this paper is organized as follows.  Section 2 will introduce our self-adaptive 

disk array organizations.  Section 3 will compare the mean times to data loss (MTTDL) achieved by self-

adaptive arrays with those achieved by array organizations using replication.  Section 4 will review 

previous work and Section 5 will have our conclusions. 

2 OUR APPROACH 

Consider for instance the small disk array displayed on Fig. 1.  It consists of four pairs of disks with data 

replicated on each pair of disks.  For instance, disks A1 and A2 contain the same data set A.  Assume now 

that disk B1 fails.  As a result, only one remaining copy of data set B will remain and the array will 

become vulnerable to a failure of disk B2.  Waiting for the replacement of disk B1 is not an attractive 

option as the process make take several days.  To adapt itself to the failure, the array will immediately 

locate a disk containing data that are replicated elsewhere, say, disk A1, and replace its contents by the 

exclusive or (XOR) of data sets A and B thus making the array immune to a single disk failure.  Fig. 2 

displays the outcome of that reconfiguration.  The array can now tolerate any single disk failure.  The 

sole drawback of the process is that accesses to data sets A and B will be now somewhat slower.  In 

particular, updates to these two data sets will be significantly slower as each update will now require one 

additional read operation.  This condition is only temporary as the array will revert to its original 

condition as soon as the failed disk is replaced. 
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Fig. 2.  The same disk array after disk B1 has failed. 
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Fig.3.  The same disk array after disk D1 has failed. 
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Fig. 4.  The same disk array after disk D2 has failed. 
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Fig. 5.  The same disk array after disk B2 has failed. 

Consider now what would happen if a second disk failed, say, a failure of disk D1, before disk B1 

was repaired.  This second failure would remove one of the two copies of data set D and make the array 

vulnerable to a failure of disk D2.  To return to a safer state, the array will locate a disk containing data 

that are replicated elsewhere, say, disk C2, and replace its contents by the exclusive or (XOR) of data sets 

C and D.  Fig.3 displays the outcome of this reorganization. 

Under most circumstances, the two failing disks will be replaced before a third failure could 

occur.  Delays in the repair process and accelerated disk failures resulting from environmental conditions  
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Assumptions: 

disk D is failed data disk 

Algorithm: 

begin 

 find disk E  having same contents as disk D 

 if found then 

  find a disk F whose contents are replicated on another disk G 

  if found then 

   replace contents (F) by contents(E) XOR contents(F) 

  else 

   find parity disk Z whose contents are XORed contents of fewest data disks  

   if found then 

    replace contents (Z) by contents(E) XOR contents(Z) 

   else  

    do nothing 

   endif 

  endif 

 else 

  find sufficient set S of disks to reconstitute content(D) 

  if found then 

   reconstitute content(D) on a parity disk X in S 

   replace parity disk X 

  else 

   declare failure 

  endif 

 endif 

end 

Fig. 6.  Replacing a failed data disk. 

could however result in the occurrence of a third disk failure before disks B1 and D1 are replaced.  Let us 

assume that disk D2 fails this time.  Observe that this failure destroys the last copy of data set D.  The 

fastest way to reconstitute this data set is to send the contents of disk C1 to the disk that now contains 

C ⊕ D and to XOR the contents of these two disks in situ.  While doing that, the array will also send the 

old contents of the disk to the disk that contains A ⊕ B in order to obtain there A ⊕ B ⊕ C ⊕ D.  As seen 
on Fig. 4, the disk array now consists of four disks holding data and one parity disk.  

Let us now consider for the sake of completeness the rather improbable case of a fourth disk 

failure occurring before any of the three failed disks can be replaced.  Let us assume that disk B2 fails this 

time.  As Fig. 5 indicates, the sole option left is to reconstitute the contents of the failed disk by XORing 

the contents of the parity disk (A ⊕ B ⊕ C ⊕ D) with those of disks A2, C1 and D and store these contents 

on the former parity disk.  This would keep all four data sets available but would leave all of them 

vulnerable to a single disk failure. 

In its essence, our proposal is to let the array adapt itself to the temporary loss of disks by 

switching to more compact data representations and selecting whenever possible a configuration that 
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Assumptions: 

disk X is failed parity disk 

Algorithm: 

begin 

 find sufficient set S of disks to reconstitute contents(X) 

 if found then 

   find parity disk Z whose contents are XORed contents of fewest data disks  

   if found then 

    replace contents (Z) by contents(Z) XOR contents(X) 

   else  

    do nothing 

   endif 

 else 

  declare failure 

 endif 

end 

Fig. 7.  Replacing a failed parity disk. 

protects the data against a single disk failure.  That process will involve introducing parity disks, merging 

them and sometimes using them to reconstitute lost data. 

Fig. 6 and 7 give a more formal description of our scheme.  The first algorithm describes how the 

array reacts to the loss of a data disk.  Two main cases have to be considered depending on whether the 

contents of the failed disk D can be found on another disk E.  When this is the case, the array will protect 

the contents of disk E against of a failure of that disk by storing on some disk F the XOR of the contents 

of E and the contents of one or more disks.  To select this disk F, the array will first search for disks 

whose contents are replicated on some other disk.  If it cannot find one, it will then select the parity disk 

Z whose contents are the XORed contents of the fewest data disks.  The second case is somewhat more 

complex.  When the contents of the failed disk D cannot be found on another disk, the array will attempt 

to find a sufficient set S of disks to reconstitute the contents of the lost disk.  If this set exists, it will 

reconstitute the contents of the lost data disk D on a parity disk X in S.  Once this is done, the array will 

try to remedy the loss of the parity data on disk X by calling the second algorithm. 

Our second algorithm describes how the array reacts to the loss of a parity disk X.  This loss can 

either be the direct result of a disk failure or a side-effect of the recovery of the contents of a data disk D.  

In either case, the array checks first if it can reconstitute the contents of the failed parity disk X.  This will 

be normally possible unless the array has experienced two simultaneous disk failures.  If the contents of 

X can be reconstituted, the array will try to XOR them with the contents of a data disk that was replicated 

somewhere else.  If no such data disk exists, the array will XOR the reconstituted contents of X with the 

contents of the parity disk Z whose contents are the XORed contents of the fewest data disks. 

Space considerations prevent us from discussing how the array will handle disk repairs.  In 

essence, it will attempt to return to its original configuration, first by splitting the parity disks whose 

contents are the XORed contents of the largest number of parity disks then by replacing the remaining 

parity disks by pairs of data disks.  A more interesting issue is how the self-adapting array would react to 

the failure of a disk involved in a reconfiguration step.  Let us return to our previous example and 

consider what would happen if disk B2 failed after disk B1 failed but before the contents of disk A1 could 

be completely replaced by the XOR of the contents of disks A1 and B2.  Assuming that we do this 
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replacement track by track, disk A1 would be left in a state where it would contain some of its original 

tracks and some tracks containing the XOR of the corresponding tracks of disks A1 and B2.  This means 

that some but not all the contents of disk B2 would be recoverable and that some but not all contents of 

disk A1 would have become vulnerable to a single disk failure. 

3 PERFORMANCE ANALYSIS 

Self-adaptive disk arrays occupy a place between replicated disk organizations and organizations using 

erasure coding.  As long as most disks are operational, they provide the same read and write access times 

as static replicated organizations.  In addition, they are more resilient to disk failures.  We propose to 

evaluate this resilience and to compare it with that of static replicated organizations. 

Estimating the reliability of a storage system means estimating the probability R(t) that the 

system will operate correctly over the time interval [0, t] given that it operated correctly at time t = 0.  

Computing that function requires solving a system of linear differential equations, a task that becomes 

quickly unmanageable as the complexity of the system grows.  A simpler option is to focus on the mean 

time to data loss (MTTDL) of the storage system.  This is the approach we will take here.   

Our system model consists of a disk array with independent failure modes for each disk.  When a 

disk fails, a repair process is immediately initiated for that disk.  Should several disk fail, the repair 

process will be performed in parallel on those disks.  We assume that disk failures are independent events 

exponentially distributed with mean λ_, and that repairs are exponentially distributed with mean µ.   

The MTTDL for data replicated on two disks is 
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Fig. 8 displays the state transition diagram for a very small self-adaptive array consisting of two 

pairs of disks with each pair storing two identical replicas of the same data set.  Let us assume that disks 

A1 and A2 contain identical copies of data set A while disks B1 and B2 store identical copies of data set B.  

State <2, 2> represents the normal state of the array when its four disks are all operational.  A failure of 

any of these disks, say disk A1 would bring the array in state <2, 1>.  This state is a less than desirable 

state because the array has now a single copy of data set A on disk A2.  Hence a failure of that disk would 

result in a data loss. 



 

7/5/2006 10:36 PM 7 

22 21

4λ

µ

11X 11

3λ

2µ

λ

κ 2λ2λ

Data loss

 

Fig. 8.  State transition diagram for a self-adaptive disk array consisting of two pairs of mirrored disks. 
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Fig. 9. Modified state transition diagram for the same disk array. 

To return to a more resilient state, the array will immediately start replacing the contents of 

either disk B1 or disk B2 with the XOR of data sets A and B, thus bringing the system from state <2, 1> to 

state <1, 1, X>.  We assume that the duration of this self-adaptive process will be exponentially 

distributed with mean κ.  A failure of either of the two redundant disks present in state <2, 1> or a failure 
of any of the three disks in state <1, 1, X> would leave the array in state <1, 1>, incapable of tolerating 

any additional disk failure.   

Recovery transitions correspond to the repair of one of the disks that failed.  They would bring 

the array first from state <1, 1> to state <1, 1, X> and then from state <1, 1, X> to state <2, 2>.  A third 

recovery transition would bring the array from state <2, 1> to state <2, 2>.  It corresponds to situations 

where the failed disk can be replaced before the self-adaptive process can be completed. 

Since data losses are essentially irrecoverable, the state corresponding to such a loss is an 

absorbing state.  Hence a steady state analysis of the array would provide no insight on its performance.   
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Fig. 9. Mean times to data loss achieved by a self adaptive disk array consisting of two pairs of mirrored 

disks. 

Let us now consider the state transition diagram displayed in Fig, 9.  It has the same states and 

the same transitions as that of Fig.8 but for the two transitions leading to a data loss, which are now 

redirected to state <2, 2>.  This diagram represents what would happen if the array went through 

continuous cycles during which it would first operate correctly then lose its data and get instantly 

repaired and reloaded with new data [PS+06].  The corresponding system of equations is 
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together with the condition that p22 + p21 + p11X + p11= 1, where pij represents the steady-state probability 

of the system being in state <i, j>.  In addition the rate at which the system will fail before returning to its 

normal state is 
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Solving system (1), we obtain  
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The mean time to data loss of our disk array (MTTDL) is then 
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Fig. 10 displays the MTTDLs achieved by the self –adaptive array for selected values of κ and 
repair times varying between half a day and seven days.  We assumed that the disk failure rate l was one 

failure every one hundred thousand hours, that is, slightly less than one failure every eleven years.  

MTTDLs are expressed in years. 

We can make three main observations.  First, our self-adaptive array provides much better 

MTTDLs than a static array that makes no attempt at reconfiguring itself after disk failures.  This is a 

very significant result as this is a very small array that could only take a single corrective action, namely 

a transition from state <2, 1> to state <1, 1, X> after a disk failure.  Larger self-adaptive disk arrays, such 

as the array we considered in the previous section, should perform even better as they can take more 

steps to protect their data after successive disk failures. 

Second, these benefits remain evident even when the reconfiguration process takes six hours.  

Since the reconfiguration process normally consists of reading the whole contents of a disk and XORing 

these contents with the contents of a second disk, this is clearly an upper bound.  In reality we expect 

most restructuring processes to take between one and two hours depending on the disk bandwidths and 

capacities. 

Finally, the MTTDLs achieved by our self-adaptive organization remain nearly constant over a 

wide range of disk repair times.   This is a significant advantage because fast repair times require 

maintaining a local pool of spare disks and having maintenance personnel on call 24 hours a day.  Since 

our self-adaptive organization tolerates repair times of up to one week, if not more, it will be cheaper and 

easier to maintain than a static replicated organization with the same number of disks. 

4 PREVIOUS WORK  

The idea of creating additional copies of important data in order to increase their chances of survival is 

likely to be as old as the use of symbolic data representations by mankind and could well have preceded 

the discovery of writing.  Erasure coding appeared first in RAID organizations as (n – 1)-out-of-n codes 

[CL+94, PGK88, SB 92].  RAID level 6 organizations use (n – 2)-out-of-n to protect data against double 

disk failures [BM93]. 

The HP AutoRAID [WG+96] automatically and transparently manages migration of data blocks 

between a replicated storage class and a RAID level 5 storage class as access patterns change.  This 

system differs from our proposal in several important aspects.  First, its objective is different from ours.  

AutoRAID attempts to save disk space without compromising system performance by storing data that 

are frequently accessed in a replicated organization while relegating inactive data to a RAID level 5 

organization.  As a result, data migrations between the two organizations are normally caused by changes 

in data access patterns rather than by disk failures.  Self-adaptive disk arrays only reconfigure themselves 

in response to disk failures and repairs.  Second, AutoRAID actually migrates data between its two 

storage classes while self-adaptive disk arrays keeps most data sets in place.  Finally, the sizes of the 

transfer units are quite different.  A self-adaptive disk array manages its resources at the disk level.  The 

transfer units managed by AutoRAID are physical extent groups (PEGs) consisting of at least three 

physical extents (PEXes) whose typical size is a megabyte.  Consequently, AutoRAID requires a complex 

addressing structure to locate these PEXes while a self-adaptive array must only keep track of what 

happened to the contents of its original disks.  Assuming that we have n data sets replicated on 2n disks, 
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the actual locations of data sets and their parities can be stored in 2n
2
 bits.  In addition, this information is 

fairly static as it is only updated after a disk failure or a disk repair. 

5 CONCLUSIONS 

We have presented a disk array organization that adapts itself to successive disk failures. When all disks 

are operational, all data are replicated on two disks.  Whenever a disk fails, the array will immediately 

reorganize itself and adopt a new configuration that will protect all data against any single disk failure 

until the failed disk gets replaced and the array can revert to its original condition.  Hence data will 

remain protected against the successive failures of up to one half of the original number of disks, 

provided that no critical disk failure happens while the array is reorganizing itself.  As a result, our 

scheme achieves the same access times as a replicated organization under normal operational conditions 

while having a much lower likelihood of loosing data under abnormal conditions.  Furthermore it 

tolerates much longer repair times than static disk arrays. 

More work is still needed to investigate larger disk arrays and to devise self-adaptive strategies 

for disk arrays where some data are more critical than other and thus deserve a higher level of protection.  

This is the case for archival storage systems implementing chunking to reduce their storage requirements.  

Chunk-based compression, or chunking, partitions files into variable-size chunks in order to identify 

identical contents that are shared by several files [MC01].  Chunking can significantly reduce the storage 

requirements of archival file systems. Unfortunately, it also makes the archive more vulnerable to the 

loss of chunks that are shared by many files.  As a result, these chunks require a higher level or 

protection than chunks that are only present in a single file [BP+06]. 
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