
An Encrypted, Content Searchable Scalable Distributed Data Structure

Thomas Schwarz1, Peter Tsui1, Witold Litwin2

Abstract

Scalable Distributed Data Structures (SDDS) store
data in a file of key-based records distributed over
many storage sites. The number of storage sites
utilized grows and shrinks with the storage needs of
applications, but transparently to them. An application
can search records by key or by content in parallel at
all storage sites. The need for privacy of the data at the
storage sites might require the encryption of the
records. However, the scheme needs to preserve the
capability to search in parallel. We propose a scheme
that achieves this goal. We create a collection of
additional SDDS indices. We encrypt these so that we
can still perform string searches performed in parallel
at the storage sites. We present the scheme and
evaluate its strength as well as storage and access
performance.

1. Introduction

The bandwidth of modern networks and the price of
commodity computers have lead to an explosive
interest in “multicomputers”, systems utilizing many
interconnected computers (called the nodes or sites).
Multicomputer data might be stored in the distributed
RAM of the sites or on their disk drives. Often, the
components might be used in other capacities as well.
For example, a large organization might store high-
traffic data on the workstations of their employees
making use of excess capacity. Farsite [A&al02,
BDET00, DW01] is an example of this architecture for
a large organization where files are stored redundantly
and in encrypted form on the various workstations.
Whenever a legitimate user has access to a node of a
multicomputer, the privacy of the stored data becomes
an issue.

Scalable Distributed Data Structures (SDDS) is a
class of data structures that offer constant speed
operations in a multicomputer, independent of the
number of nodes. For example, the SDDS version of
linear hashing, LH* [LNS96], and its scalable high
availability version, LH*RS [LMS05], both offer fast,
constant time lookup of records in a multicomputer.
They also allow for parallel (sub-)string searches.

In our setting, we want to encrypt records for SDDS
such as LH* and LH*RS while retaining the capacity
for parallel searches at the components of the
multicomputer. If we use strong encryption, then the
contents become unsearchable. The sheer size of the
database makes it impossible to send encrypted data to
a client (or trusted node), decrypt the data there, and
search the data. If we use weak encryption, then an
attacker can break the scheme. We therefore
compromise as follows. We strongly encrypt the
records themselves. In addition generate index records.
These are also encrypted, but not as strongly, in order
to allow generic pattern searches on the main records
through the index records. Our contribution in this
paper is an index encryption method that makes the
overall storage of the application data secure for
typical applications.

The structure of the SDDS records is usually
assumed to be flat, i.e. to consist of a key and a single
data (non-key) field. Techniques like the one of
Agrawal et al. [AKSX04] are appropriate for
encrypting numeric keys and a fortiori for other keys
in a relational database table with many fields, but do
not solve the problem for flat records. Next, in contrast
to the work by Song et al. [SDW00], we want to be
able to search for arbitrary patterns, not just words.
We aim at a unit of search as close as possible to a
single data symbol without compromising security.

In more detail, we use Electronic Code Book
encryption (ECB) on blocks of characters to generate

1 Department of Computer Engineering
Santa Clara University

{tjschwarz, ptsui}@scu.edu

2 CERIA
Université Paris Dauphine
Witold.Litwin@dauphine.fr

our index records. We further mitigate ECB’s

susceptibility to a frequency analysis. The way of
doing this at the index records while reducing the
overall operational and storage costs of maintaining
index records is the core of our proposal. First, we
enhance the protection of our index records by
redundancy removal, where we use lossy compression
to make the encrypted index records look more like
random data. A side-effect of redundancy removal is
the creation of false positives that reduce the accuracy
of string searches. We show the trade-offs between
search accuracy and the overall strength of our
encryption. Second, we disperse our ECB-encrypted
and compressed index records over several sites. This
limits the amount of information available to an
attacker at a single site. Our experimental, initial
results (gained from a hard case) show these trade-offs.
They do not yet measure the efficiency of dispersion.

Our threat model worries about data confidentiality
tha

chieve
a

r scheme. We then
ex

n about data integrity and availability. We primarily
protect data against the owners and other users of the
storage nodes and only incidentally against an intruder.
We are not concerned with network security e.g. the
authentication scheme. For instance, we do not deal
with the design of the authentication scheme needed.
We also assume the use of any of the schemes that
make traffic analysis difficult, e.g. [CGKS95].

All things considered, our scheme seems to a
medium level of security. It is secure enough to

defeat a determined attacker with commonly available
computing resources. It is probably not secure enough
to withstand an attacker with outstanding computing
resources and with insider knowledge of the
underlying data. In addition, dispersion is vulnerable
against collusion among those storing index records.
However, in an SDDS environment, collusion should
be rather difficult since a nodes does not have access to
the data dispersion scheme and consequentially cannot
easily determine the other nodes where a particular
index record has been dispersed.

Below, we give the details of ou
plain redundancy removal from the index records

and index record dispersion. Next, we describe the
complete scheme. Finally, we propose methods for
assessing security and give a preliminary evaluation.
We use an extract from the San Francisco phone book
consisting only of names and numbers. This is a
difficult case for our scheme because the records are so
small consisting only of a full name and a phone
number.

2. Basic Scheme

A record consists of a key, that is the Record
Identifier (RI) and of the Record Content field (RC)
(Figure 1). We assume that the key is artificially
created number and not sensitive information. The RC
field is a flat, zero terminated string consisting of
symbols, typically either 8-bit ASCII symbols or 16-bit
Unicode symbols. We store the database (collection of
records) as an SDDS over multiple sites in strongly
encrypted form. We then generate the index records as
follows. We chunk an RC into chunks of equal length.
We then encrypt each chunk using Electronic Code
Book (ECB) encryption. This is our Stage 1.

ECB allows (at least in principle) frequency
analysis. We strengthen the encryption by two
different methods: First, we remove redundancy
through lossy compression, that is, we preprocess the
symbols by placing them into a smaller number of
buckets and encode them by bucket number. This
introduces false positives, but makes attacks on the
encryption more difficult. This is our Stage 2.
Second, since even removing redundancy from the
original records might not be sufficient, we disperse
the index records over several sites, our Stage 3, in
order to limit the amount of information available to
the attacker at any single site. We illustrate our
scheme in Figure 3.

2.1. Creation of Index Records, Stage 1

From a single RC, we create s “chunked” RC made

up of chunks of s consecutive symbols in the following
way: Assume that the RC is (r0, r1, r2…rN). The first
file consists of the chunks (r0, r1 … rs-1), (rs,rs+1 … r2s-

1), … Thus, chunk i is made up of (r(i-1)s, r(i-1)s+1, … ris-

1). If necessary, we pad the last chunk with zero
symbols (denoted by 0) to create the last chunk. The
second chunked RC starts the chunking with an offset
of one instead of zero. Thus, this chunked RC is (0,0,
…, 0, r0), (r1, r2,…, rs), … Chunk i is (r(i-1)s+1, r(i-1)s+2,
… ris). We similarly proceed to create the chunking
for chunked RCs 2, 3...s−1. We then use Electronic
Code Book (ECB) encryption on all the chunks in the s
chunked RC records to generate s encrypted, chunked
RC. (Basically, ECB uses standard secret key
encryption to generate a seemingly random, reversible
mapping of clear-text chunks to encrypted chunks of
the same size.) We store the s RC on s different sites.

Beginning and ending chunks can create a security
problem. For example, a beginning chunk in the
second chunked RC has the form (0,0,…0, r0). This
can be recognized because there are at most as many

Figure 1: SDDS Record Structure

RI RC

encrypted first chunks than there are symbols and
exploited through an elementary frequency attack. The
gained decoding can then be used to speed up
password cracking on the ECB or might prove useful
all by itself. A simple counter-measure such as not
storing these “partial” chunks limits our search
capability, but is otherwise perfectly feasible.

2.2. Example

Assume that we chose s = 4, a rather low value that
might allow a successful frequency analysis. Assume
that our RC is “ABCDEFGHIJKLMNOPQR
STUVWXYZ”. Then, the first chunked RC consists
of “(ABCD),(EFGH),(IJKL),(MNOP),(QRST),
(UVWX), (YZ00),” the second chunked RC of
“(000A), (BCDE), (FGHI), (JKLM), (NOPQ),
(RSTU), (VWXY), (Z000)”, the third RC of “(00AB),
(CDEF), (GHIJ), (KLMN), (OPQR), (STUV),
(WXYZ)”, and the fourth one of “(0ABC), (DEFG),
(HIJK), (LMNO), (PQRS), (TUVW), (XYZ0)”. To
generate the encrypted RC, we encrypt each chunk
individually.

2.3. Searches

To search for a substring (q0, q1, … ql-1), we create

all possible chunkings of this string. Assume that l =
x⋅s+y. Then we create the chunking series (q0, q1, …
qs-1), (qs, qs+1, …, q2s−1), … (q(x−1)s, q(x−1)s+1, …qxs−1); (q1,
q2, …, qs), (qs+1, qs+2…, q2s), … , (q(x−1)s+1, q(x−1)s+2,

…qxs); … Here we only include chunks into the s series
that consists entirely of s substrings of length s of the
search string. We then send all series to all the sites,
who try to match consecutive chunks. If the substring
is contained in the record, then all sites indeed report a
hit. However, since we do not search for the complete
string at all sites, some sites might report a false
positive. It is not possible that a search results in false
positives from all sites.

Unfortunately, our search strategy does not work
for search strings of length less than s. We can
“kludge” a search strategy for search strings of length
s−1 by adding all possible characters to the end of the
string. This method is wasteful and might pose a
security risk if an attacker snoops network traffic.

2.4. Example (Continued)

Assume that we want to search for the string
``BCDEFGHIJK''. We produce all possible s = 4
chunkings of this string (without zero symbols). That
is, we produce the following chunked search strings:

• (BCDE)(FGHI)
• (CDEF)(GHIJ)
• (DEFG)(HIJK)
• (EFGH)

We then send all the chunkings to any one of the
storage sites. Site 1 will have a hit for the fourth string;
Site 2 will have a hit for the third search string; etc.
We observe that each chunked search string has a hit
in exactly one index record. In general, each chunked
search string has to be found in one of the index
records, because of false positives or because of
repeating characters, there might be more hits. This
shows that we could use less storage or less search
strings, but in this case, it is possible to have false hits.
For example, assume that we only use one storage site.
As our example shows, the string “ACDEFGHI” will
generate the same hit for storage site one − if that is the
one we picked – as our original search string because
the critical chunked search string, number 4, is the
same as that generated from the original search string.

2.5. Limiting Storage Overhead

Our basic scheme stores the same data in s sites and

creates and searches for s search strings for every
search operation. We can avoid this overkill at the
costs of a small increase in false positive hits. For
example, assume a chunk size of s = 8. We can decide
on 4 storage sites, containing the following chunkings

 (r0, r1, … , r7), (r8, r9, …r15), (r16, r17, … r23), …
 (0, 0, r0, r1, … r5), (r6, r7, …,r13), (r14, r15, …, r21), …
 (0, 0, 0, 0, r0, … r3), (r4, r5, …r11), (r12, r13, … r19), …
 (0, 0, 0, 0, 0, 0, r0, r1), (r2, r3, …r9), (r10, r11, …r17),
…
for each record D-field. When we search for substring
(q0, q1, … ql-1), we generate two search chunkings
 (q0, q1, … qs−1), (qs, qs+1, … q2s-1), …
 (q1, q2, … qs), (qs+1, qs2, … q2s), ...
and send both to all the sites. For each occurrence of
the substring, only one site will report a hit. Thus,
false positives will be more numerous. In addition,
using four data sites implies that the length of the
search string needs be at least s+1.

Alternatively, we can use only two storage sites, but
now have to send four search strings. The minimum
length of a search string is now s+3.
We give a simpler example in Figure 2, adapted from
our telephone database that we use as a base for our
experimentation. The records has identifier RI = 007
and consists of a (fake) telephone number and a name.
We use underscores to denote the space. When we
search for the last name “Schwarz”, we should actually
search for “ Schwarz ” with a leading space and a

trailing zero. Since we generate two index records
with chunk size 4 (Figure 2a), we only need to
generate two index search records (Figure 2b). When
we actually perform the search, we have a hit for the
first search string in the second index record.

Figure 2a: Example Record Chunking

Figure 2b: Search Strings
Figure 2: Search Example

3. Redundancy Removal (Stage 2)

Separating record store sites and record index sites

is motivated by the possibility to compress the index
records, but mainly because a lossy compression of the
index records makes a frequency analysis more
difficult. We use the following strategy for a lossy
compression. Assume that we start out with 2f
symbols. If our symbols are ASCII characters, then f
=8 and we start out with 256 symbols. Assume a chunk
size of g symbols. Since we want to retain the
capability for searching, we replace each chunk by a
smaller chunk. For example, we might decide to map
each chunk consisting of 4 byte-symbols by a chunk of
16 bits only. When we pick the mapping, we try to
equalize the frequency for each nibble, both in order to
make a frequency attack more difficult and in order to
limit the new false positives in searches that lossy
compression creates. In order to come up with a good
mapping, we can preprocess a representative part of
the database and count the occurrence of each chunk.
We then place these characters into buckets, one for
each encoded symbol, in order of frequency of
occurrence. For small chunk sizes, this will not
necessarily result in an equal frequency distribution of
the encoded symbols, but it will certainly remove the
larger frequency spikes. For example, the frequency
distribution of letters in English text is well known
[PE82]. Were we to create a lossy encoding of letters
only in only 3 bits, then each encoded symbol should
occur at a frequency of 1/8 = 12.5%. But the letter “E”

alone already accounts for 12.702% of all occurrences.
Our procedure becomes impossible for larger chunks
sizes simply because there are just too many possible
chunks. In this case we can at least preprocess the
records encoding each symbol into a smaller one or
using the same procedure for subchunks.

4. Dispersion of Index Site Records over
Several Sites (Stage 3)

A chunked record in encrypted form still contains

the same information that the original record has. To
reduce the amount of information to an attacker
(assumed primarily to have access to a single site), we
can divide the information contained in it and store it
on separate sites. We now propose a way to disperse
the index records over k sites. A good value for k
needs to divide the chunk size in bits and be small
enough to limit the number of false hits (as we will
see). For this reason, a good value for k would be 2 or
4.

Assume then that the chunk size is c = s⋅f bits,
where s is – as above – the number of characters in
each chunk and 2f is the number of characters. k has to
be a divisor of c. Write c = g⋅k. We construct a Galois
field (finite field) Φ = GF(2g). In short, the elements
of Φ are bit strings of size g. Addition and subtraction
are defined as the bitwise XOR of two operands.
Multiplication and division are more involved
operations, but there exist a number of good methods
to implement them in the literature. The rules of
algebraic manipulations in the field of real numbers,
complex numbers, rational numbers, etc. apply as well
in Φ. Let E be an invertible k by k matrix over Φ. A
good E seems to be one where all coefficients are non-
zero. (Since k is small and g is larger than k, such
matrices exist in abundance, e.g. as Cauchy matrices of
Vandermonde matrices.) Let c be a chunk, i.e. a bit
string of size c. By breaking c up into pieces of size g,
we can write c as a row vector of dimension k in Φ: c =
(c1, …, ck). We then calculate (d1, …, dk) = d = c⋅E for
each chunk in a index record. We then store d1 in the
first site, …, and dk in site k.

 We could use other ways of breaking up chunks
and distributing them to different sites. Since we only
need to tell whether chunks are the same or not, any
dispersion algorithm (such as erasure correcting codes
popularized as IDA [Ra89]) that maintains the same
information as in the original chunk will do. Our
encoding seems to be appropriate because it is fast (if
Galois field multiplication can be implemented by
small tables) and because a dispersed symbol di is
calculated from the whole chunk and not just a piece of

4593598_THOMAS_SCHWARZ0000000 007

007 4593598_THOMAS_SCHWARZ0000000

004593598_THOMAS_SCHWARZ00000 007

_SCHWARZ0

_SCHWARZ SCHWARZ0

the chunk. This makes a frequency analysis on the
contents of one of the dispersion sites more difficult.

To implement a search, we break the chunks in the
search string up according to the same rules. We then
send the broken up pieces to the dispersion sites. If all
dispersion sites containing dispersed chunks from the

same index record report a hit in the same location,
then the search string is contained in the index record
at that location. However, since each dispersion site
contains less information than the original index site,
we can expect to increase the number of false
positives.

Figure 3: Generation of Records in our scheme: A single record is stored here at 9 different sites.
One site, the record store site, contains the record in strongly encrypted form. The other 8 sites,
the record index sites, contain the result of dispersing the preprocessed chunks of the records,
generated from two different chunkings. The number of chunkings and the ratio of dispersion are
application specific parameters.

5. The Complete Scheme

Figure 3 gives an overview of the record storage

in our scheme. A given record is identified by a
unique RID that we presume is not security sensitive.
This RID tags all records that we will ultimately store
(indicated by the gray boxes.) We maintain one copy
of the record in strongly encrypted form (upper right
corner). To generate the index records, we use in this
example only two different chunkings. Before or
after the encryption, we can use lossy compression in
order to reduce the size of the index records, but also
in order to even out frequencies of encrypted chunks.
Finally, we disperse the chunked records over a
number of dispersion sites.

In order to search all data fields, we first need to
create chunkings of the index string. The number of

chunkings depends on the number of record
chunkings and the number of symbols in each chunk.
For example, if each chunk consists of eight symbols
and we use two chunkings of the records, then we
need to chunk each index string four times. Next, we
use the same encoding to compress the index string
chunkings. Finally, we send the compressed index
string chunkings to all dispersal sites. These report
back their hits. If all dispersion sites belonging to a
certain record chunking – enclosed by the same gray
rounded boxes in Figure 3 – report a hit at the same
offset, then this is reported as a hit to the client. It
will depend on the type of data and the size of the
system whether it is not advisable to elect a leader
among the dispersion sites to filter out false positives.
The client eventually receives all hits in the form of a
list of RIDs. (In order to avoid a traffic analysis,

Record RID

Encrypted record RID

these lists are not transmitted in the clear, but rather

RID Chunked Record 1 RID Chunked Record 2

RID RID

RID RID

RID RID

RID RID

1:4 Dispersion of chunked, preprocessed
records

Index Records

Processed Chunked Record 1 RID Processed Chunked Record 2 RID

in a way that hides the size of the list to a snooper.)
It then requests the corresponding records from the
corresponding record store site.

As an aside, a standard SDDS such as LH* or its
hig

6. Evaluation of the Scheme

able 1: χ -values for the SF Phone Directory

χ2 (Single Letter) 2,071,885

h-availability version LH*RS is used to store index
records and the records themselves. The keys for the
index records are made up of the RID and the
chunking identifier and the dispersion site identifier
(3 bits in Figure 3) appended as the least significant
bits to the RID. In this way, index records belonging
to the same original record will be stored in different
LH* buckets if the number of LH* buckets is greater
than 8.

Figure 4: Extract from SF Phone Directory
Database (Numbers changed)

2T

χ2 (Doublets) 10,725,271
χ2 (Triplets) 40,450,503

A 11.1%
E 9.89%
N 8.55%
R 7.55%
I 6.98%

O 6.27%
AN 3.21%
ER 2.33%
AR 2.11%
ON 1.87%
IN 1.71%

CHA 0.69%
MAR 0.64%
SON 0.50%
ONG 0.50%
ANG 0.49%

eally, the contents of the dispersed, chunked,

an

7. Preliminary Experimental Results

e use a telephone database as a test case.
Be

effects of dispersal alone. Our
rec

Id
d preprocessed index records are indistinguishable

from random bits. Knuth’s seminal work [K99]

discusses a number of statistical tests for randomness,
and the work at the National Institute of Standards
and Technology (NIST) [R&al01, S99] used similar
statistical tests in the context of selecting a code for
the AES standard. Weaker, though probably strong
enough would be a proof that the information
contained in a (dispersed) index record is too small.
In general, a letter in an English text contains
between 2 and 3 bits of information [S51], thus
storing only 2 bits for each byte should be safe.
However, things are not so simple. In one of
Shannon’s experiments [S51], he gave a human
subject one hundred characters of an English text and
asked them to guess the next character; in this
manner he showed that the information contained in
a single letter is closer to a single bit. (See [MGR98]
for a further study of entropy in English texts.) If we
would have to disperse English text at the rate of 1:8,
then the resulting index records would contain so
little information to hand out a large number of false
positives for every search. In addition to these
difficulties, our database does not contain text from
books written in English, but generic data with
presumably very different entropies. Thus, it appears
that we need to settle for index records that are
provably close to being true random numbers.

ADRIAN CORTEZ%%%%%%%%%%%%%415-409-0271$$

W
cause the entries are very short – they only consist

of names and are indexed by the telephone number –
our example is a very bad case for our scheme. We
obtained a telephone directory San Francisco in
California. The directory is intended for lookup with
a web-browser. We therefore processed the records
to give us flat records containing the telephone
number as the RID and the name of the subscriber as
the RC. We were as yet not able to break the
encoding to include address information. The names
are in capitalized letters. Because of the heavy
presence of Asian names, the frequency distribution
of letters is somewhat unusual. Table 1 gives the χ2-
values for single characters, doublets, and triplets in
the 282,965 entries large SF White Pages Phone
Directory and lists the most common single letters,
doublets, and triplets.

We first tested the
ords use the normal 8b ASCII encoding. We

broke the record in chunks of length one and
dispersed each record into four dispersion records
using our method with a random non-singular matrix.
Thus, a dispersion record contained one symbol of

AFDAHL E%%%%%%%%%%%%%%%%%%415-409-0817$$
AKIMOTO YOSHIMI%%%%%%%%%%%415-409-0019$$
ALBAREZ G%%%%%%%%%%%%%%%%%415-409-0788$$
ALEXANDER GINA%%%%%%%%%%%%415-409-0464$$
ALGAHIEM ALI%%%%%%%%%%%%%%415-409-0185$$
ALGHAZALY EBREHIM%%%%%%%%%415-409-0723$$
ARBELAEZ LIBIA MARIA%%%%%%415-409-0247$$
ARMENANTE MARK A%%%%%%%%%%415-409-0910$$

length 2b for each 8b symbol in the original record.
We abbreviate the 2b symbols 00, 01, 10, 11 as 0, 1,
2, and 3 respectively. As we can see in Table 2, this
particular matrix (nor any other we tested) did not
achieve an even distribution in the occurrence of
these four symbols. Worse, doublets are not nearly
evenly distributed either. However, the decrease in
the χ2-values as compared to Table 2 is encouraging.

2Table 2: χ -values for the SF Phone Directory

χ2 (Single Letter) 178,849

after Dispersion.

χ2 (Doublets) 335,796
χ2 (Triplets) 486,790

0 33.5%
1 26.9%
2 21.8%
3 17.7%

00 6.98%
10 6.27%
01 3.21%
20 2.33%

Table 3: χ2-values for the SF Phone Directory

hunk Size = 1

2 single χ2 double χ2 triple

after Pre-Processing

C
encod. χ

2 .49 1 0 81,631.2 185,329.
4 97.1 166,060 388,997
8 891.3 640,319 1,908,811

1 352, * 6 565..8 3,525,940 12,931,474

hunk Size = 2
2 single χ2 double χ2 triple

C

encod. χ
8 04 2 ,778 0.000,0 14,99 63

16 0.000,009 72,530 439,009
32 0.000,148 357,046 3,349,997
64 7,991.6 1 25,013,149 ,359,177

1 193,821,977 28 159,190 5,786,120

χ2 single χ2 double χ2 triple

hunk Size = 4 C
encod.

16 ,06 1 177 0.000 5,62 16,
32 0.000,3 23,696 90,309
64 0.001 92,139 585,739

1 3 4,099,420 28 0.005 55,383

hunk Size = 6
2 single χ2 double χ2 triple

C

encod. χ
16 ,08 4 076 0.000 1,01 5,
32 0.000,5 2,802 37,213
64 0.001,7 10,015 292,973

1 2,309,653 28 0.008 34,400

Next tested t ect of anc
lone. W

th

,

, we he eff redund y removal
a e used chunks of size 1, 2, 4 and 8. We did
not test larger chunk sizes (8 should give much better
values) because of the difficulties in calculating the
χ2-values. In our experiment, we first group all
symbols into chunks of size n, n = 1, 2, 4, 6. For
example, the entry “LITWIN WITOLD” for n = 4 is
transformed into (“LITW” “IN W” “ITOL”). We
then assign an encoding – a number between 0 and
(2f-1) – to all possible chunks insuring that each
encoding number occurs with about the same
frequency. If the number of possible chunks is small
compared to the number of encodings, then we did
not succeed in equal distribution. Otherwise, we are
quite successful. For example, if we use a chunk size
of 4 and 128 possible encodings, then the χ2 – value
over the complete database is only 0.005. Clearly,
some chunks follow others with much higher
frequency then others. If the first chunk is “SMIT”,
then chances are that the next chunk will start with an
“H ” and similarly, “MILL” is a good predictor for
“ER ”. Not unexpectedly, we need larger chunk sizes
in order to have less inter-chunk predictability. Our
complete results in Table 3 show our relative success
and failure.

Next, we tested for false positives when searching.
Because exhaustive searches, we extracted 1000
random records from the file. We then searched for
the 1000 last names in this subset of the database. In
a first experiment, we encoded individual symbols
(not chunks) with 8, 16, and 32 possible encodings.
For example, the actual entry:

“ABOGADO ALEJANDRO & CATHERINE”
encoded in 8 encodings (0-7, see Figure 5), yields:

 “10661260172413246060316524532”.
We then chunked all the data. For example, wi
ch

“[10],[66],[12],[60],[17],[24],[13],[24],[60],[60],
[31][65][24][53]”.

unk size 2, the record becomes now

“[06],[61],[26],[01],[72],[41],[32],[46],[06],[03],
[16][52][45][32]”.

In the first chunking, we deleted the last
incomplete chunk, in the second one, we deleted the
first incomplete chunk.

Obviously, false positives can already result from
this preprocessing. Since the letter “B” and the letter
“V” are encoded both by “0”, a search for
“AVOGADO” would result in a hit for the record
“ABOGADO”, though in this case, by chance our
encoding removes a common spelling error in
Spanish where “B” and “V” sound the same. In
addition, we chunked the records. Recall that
chunking is another source of false positives. In
addition to this source of false positives, chunking

itself can create additional false positives. For
example searching for “ADAMS” might yield a false
hit in a record with the fictional last name
“DAMSTER”. However, we did not count the
occurrence of “ADAMS” in “ADAMSON” as a false
positive, since the string “occurs”. Of course, a
search with leading and trailing space prevents that
particular error.

Figure 5: Encoding Assignment for
possible encodings

8

4(a) show a large number of
false positives. Closer inspection for a subset of 500
rec

itives after symbol
encoding (FP1) and after symbol encoding

ries
χ2 single χ2 double χ2 triple FP1 FP2

The results in Table

ords revealed that most of the preprocessing false
positives originated from the presence of short names
such as “Yu” (97 instances, but because it was a
repeated part of a last name, it caused 485 false
positives), “Ou” (93 instances of false positives),
“Ip” (90 instances), “Ba” (87 instances), “Wu” (80

instances), “Li” (54 instances), and “Le” (54
instances), which would indicate that the Warsaw
phonebook might have been a better choice for our
database. The false positives due to chunking were
also caused by short names: “Woo” (125), “Kay”
(119), “KIM” (115), “Lee” (112), “See” (112) “Mai”
(111), “LIM” (108), “Mak” (103), “Lew” (102). Our
results are tabulated in Table 4. As we can see, for
our small chunk size of 2, chunking itself created
most of the false positives (the difference between
FP2 and FP1 in Table 4). In fact, searches for short
strings amount to almost all false positives, as is
demonstrated by Table 4b.

Table 4: False Pos

and chunking with chunk size = 2 (1000
records)

(a) All ent
En

8 1.49 1,800.7 6,064.9 6,253 18,838
16 1,175 12,450 48,185 911 6,490
32 11,759 64,665 363,535 0 4,669

 (b) Entries a nger ha
Characters

with N mes Lo t n 5

En χ2 single χ2 double χ2 triple FP1 FP2
8 2.46 1,137.4 3,757.6 24 41

16 651.0 7,391.2 31,582 1 13
32 7,388.2 41,115 247,621 0 11

Finally, we ma i men on t

same dataset, but this time, we encoded two-symbol
ch

de a sim lar experi t he

unks into n = 8, 16, 32, and 64 possible codes. For
example, “ABOGADO ALEJANDRO &
CATHERINE” creates chunks “[AB], [OG], [AD],
[O_], [AL], …” and “[BO] [GA] [DO], [_A] [LE],
…”. We then collect all these chunks and encode
them in one of n different ways such that each code is
taken approximately equally often. In this
experiment, it turned out that chunking did not create
any additional false positives; therefore there is only
one column in Table 5, which contains our results.
Again, most false positives are caused by searches
for small names (v. the difference between the FP
column in Table 5a and Table 5b.) Both experiments
show clearly the trade-off between seeming
randomness and false positives. We notice that n
possible encodings in Table 4 correspond to 2n
possible encodings in Table 5. Thus, the last line in
Table 5 describes compressing 2 8bit ASCII

Symbol Quantity Encoding
space 503 0

A 495 1
E 407 2
N 383 3
R 350 4
I 300 5
O 287 6
L 258 7
S 258 7
T 200 6
H 186 5
M 178 4
C 159 3
D 150 2
U 112 5
G 108 6
Y 97 1
B 87 0
K 74 7
J 72 4
P 71 3
F 59 2
W 49 7
V 45 0
Z 29 1
& 14 6
X 6 5
Q 5 4
‘ 1 5
- 1 5

characters into 6 bits, the same rate as the last line in
Table 4.

We can draw some conclusions from our
pre

able 5: False Positives after chunk

) All entries

χ2 single χ2 double χ2 triple FP

liminary work. Redundancy removal works, but
needs to be supplemented by dispersal, which we
have not yet tested. In order to prevent false
positives from overwhelming true positives, we
cannot be too aggressive when removing
redundancy. It appears that as a next step, we need
to concentrate on large chunks (five or six characters
and dispersion should be secure enough for our
phone-directory case, but still allow searching), and
modest preprocessing.

T
encoding (FP1) and after symbol encoding
and chunking with chunk size = 2

(a

Enc

8 0.002 99.7 713.2 48 31,6
16 0.009 447.7 5,498 15,588
32 0.039 2,069.5 42,377 7,968
64 20.1 8,129.0 337,306.5 3,857

(b) Entries with last names longer than 5

χ2 single χ2 double χ2 triple FP

characters

Enc

8 .004 73.9 645.4 859
16 .013 344.4 4,835.5 96
32 .030 1,643.3 40,052.0 13
64 13.6 7,066.7 319,355.3 2

8. Conclusions and Further Work

ur proposal tries to reconcile two seemingly
irr

int, it would appear that a chunk size of
6

of Soto
[S9

y, Song’s et al. method of encrypting while
all

cknowledgment

e like to thank Jim Gray and Microsoft Research
(B

eferences

&al02] A. Adya, W. Bolosky, M. Castro, G.

.

n

oston,

O

econcilable desires: to protect data while allowing
arbitrary string searches. We make inroads by
restricting the attack model and splitting our data in
strongly encrypted records and index records used
only for searching. We create the index records
using an ECB, but use lossy compression and
dispersion in order to make the result look more like
random strings. If we were to make them look like
random streams, then the standard attack tool against
ECB, frequency analysis, cannot work. However,
even codes that do not reach this goal might be quite
secure, but it is very difficult to assess the strength of
the code. Our results indicate that redundancy
removal is indeed successful in letting the index
records appear to be more random. However, the

results do (not yet?) justify more than cautious
optimism.

At this po
ASCII characters together with dispersing index

records into 3 records might already result in a
reasonable secure code. Analyzing the resulting
encoding is quite difficult, since we have to deal with
86 = 224 possible chunks (assuming ASCII data) and
hence deriving the double χ2-value is challenging.
Currently, we are investigating the impact of
dispersion. We will also need to investigate other
types of lossy compression of the index records that
still allow for searches (see [GN99], [M97]).

Currently, we are starting to use the work
9] in order to evaluate closeness to randomness in

a better manner. Simultaneously, we are pursuing
searchable compression as a main mean of
redundancy removal. In contrast to the work
reported in [GN99] and [M97], our task is simpler,
since the compression can be (and probably should
be) lossy. We only need very good, but not perfect
precision 100% recall and 100% recall for search
results.

Finall
owing for word searches should be adapted to our

system.

A

W
ay Area Research Center, San Francisco) for their

generous financial and moral support. We would also
like to thank Ethan Miller (University of California at
Santa Cruz) for his advice and helpful discussions
regarding a first version of the scheme. Indeed, use
of ECB on large chunks is his proposal. Finally, we
would like to thank the anonymous referees for
useful feedback and challenges.

R

[A

Cermak, R Chaiken, J. Douceur, J.
Howell, J. Lorch, M. Theimer, and R
Wattenhofer: FARSITE: Federated,
Available, and Reliable Storage for a
Incompletely Trusted Environment. In
Proceedings of the 5th Symposium on
Operating Systems Design and
Implementation (OSDI 2002), B
MA, December 2002.

[AKSX04] R Agrawal, J Kiernan, R Srikant, Y Xu:
Order-Preserving Encryption for
Numeric Data, In Proceedings of
SIGMOD 2004.

[BP82] H. Beker and F. Piper, Cipher Systems,
Wiley-Interscience, 1982.

[BDET00] W. Bolosky, J. Douceur, D. Ely, and M.
Theimer: Feasibility of a Serverless
Distributed File System Deployed on an
Existing Set of Desktop PCs,
Proceedings of the International
Conference on Measurement and
Modeling of Computer Systems,
SIGMETRICS) 2000, pp. 34-43.

[CERIA] SDDS bibliography of Centre de
Recherche en Informatique Appliqueé,
University of Paris, Dauphine,
ceria.dauphine.fr / SDDS-bibliography.
html.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, M.
Sudan, Private Information Retrieval,
36th FOCS, pp.41-50, 1995.

[DW01] J. Douceur and R. Wattenhofer:
Optimizing File Availability in a Secure
Serverless Distributed File System,
Proceedings of 20th IEEE Symposium
on Reliable Systems (SRDS), 2001, pp.
4-13.

[GN99] G. Navarro and M. Raffinot: A General
Practical Approach to Pattern Matching
over Ziv-Lempel Compressed Text.
Lecture Notes in Computer Science,
Volume 1645, Jan 1999, Page 14.

[K98] D. Knuth: The Art of Computer
Programming, Volume 2: Seminumerical
Algorithms, 3d edition, Addison-Wesley,
Reading, Mass. (1981)

[LMS05] W. Litwin, R. Moussa, T. Schwarz,
LH*RS – A Highly-Available Scalable
Distributed Data Structure, Transactions
on Database Systems (TODS). Vol.
30(3). September 2005.

[LNS96] W. Litwin, M-A. Neimat, and D.
Schneider: LH*: A Scalable Distributed
Data Structure. ACM Transactions on
Database Systems ACM-TODS, (Dec.
1996).

[M97] U. Manber: A text compression scheme
that allows fst searching directly in the
compressed file. ACM Transactions on
Information Systems, 15(2), p. 124-136,
1997.

[MGR98] H. Moradi, J. Grzymala-Busse, J.
Roberts: Entropy of English text:

Experiments with humans and a machine
learning system based on rough sets.
Information Sciences, vol. 104, 1998, p.
31-47.

[Ra89] M. Rabin: Efficient Dispersal of
Information for Security, Load
Balancing, and Fault Tolerance, Journal
of the ACM (JACM), vol. 36(2), April
1989, p. 335-348.

[RAD78] R. Rivest, L. Adleman, M. Dertouzous:
On data banks and Privacy
Homomorphisms, in R. De Millo et al.,
eds., Foundations of Secure
Computation, Academic Press, New
York, 1978, p. 169-179.

[R&al01] A. Rukhin, J. Soto, J. Nechvatal. M.
Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J.
Dray, S. Vo: A Statistical Test Suite for
Random and Pesudorandom Number
Generators for Cryptographic
Applications, NIST Special Publication
800-22, May 15, 2001.
http://csrc.nist.gov/rng/SP800-22b.pdf

[S51] C. Shannon: Prediction and Entropy of
Printed English. The Bell System
Technical Journal, January 1951, p.
50 56.

[SWP00] D. X. Song, D. Wagner, and A. Perrig:
Practical Techniques for Searches on
Encrypted Data. IEEE Symposium on
Security and Privacy, Oakland,
California, 2000.

[S99] J. Soto: Randomness Testing of the
Advanced Encryption Standard
Candidate Algorithms, Technical Report,
National Institute of Standards and
Technology.
http://csrc.nist.gov/rng/rng5.html.

	1. Introduction
	2. Basic Scheme
	2.1. Creation of Index Records, Stage 1
	2.2. Example
	2.3. Searches
	2.4. Example (Continued)
	2.5. Limiting Storage Overhead

	3. Redundancy Removal (Stage 2)
	4. Dispersion of Index Site Records over Several Sites (Stag
	5. The Complete Scheme
	6. Evaluation of the Scheme
	7. Preliminary Experimental Results
	8. Conclusions and Further Work
	Acknowledgment
	References

