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Abstract 

 
Scalable Distributed Data Structures (SDDS) store 
data in a file of key-based records distributed over 
many storage sites. The number of storage sites 
utilized grows and shrinks with the storage needs of 
applications, but transparently to them. An application 
can search records by key or by content in parallel at 
all storage sites. The need for privacy of the data at the 
storage sites might require the encryption of the 
records. However, the scheme needs to preserve the 
capability to search in parallel. We propose a scheme 
that achieves this goal. We create a collection of 
additional SDDS indices. We encrypt these so that we 
can still perform string searches performed in parallel 
at the storage sites. We present the scheme and 
evaluate its strength as well as storage and access 
performance. 
 
 
1. Introduction 
 

The bandwidth of modern networks and the price of 
commodity computers have lead to an explosive 
interest in “multicomputers”, systems utilizing many 
interconnected computers (called the nodes or sites).  
Multicomputer data might be stored in the distributed 
RAM of the sites or on their disk drives. Often, the 
components might be used in other capacities as well.  
For example, a large organization might store high-
traffic data on the workstations of their employees 
making use of excess capacity. Farsite [A&al02, 
BDET00, DW01] is an example of this architecture for 
a large organization where files are stored redundantly 
and in encrypted form on the various workstations.  
Whenever a legitimate user has access to a node of a 
multicomputer, the privacy of the stored data becomes 
an issue.   

Scalable Distributed Data Structures (SDDS) is a 
class of data structures that offer constant speed 
operations in a multicomputer, independent of the 
number of nodes.  For example, the SDDS version of 
linear hashing, LH* [LNS96], and its scalable high 
availability version, LH*RS [LMS05], both offer fast, 
constant time lookup of records in a multicomputer.  
They also allow for parallel (sub-)string searches. 

In our setting, we want to encrypt records for SDDS 
such as LH* and LH*RS while retaining the capacity 
for parallel searches at the components of the 
multicomputer. If we use strong encryption, then the 
contents become unsearchable. The sheer size of the 
database makes it impossible to send encrypted data to 
a client (or trusted node), decrypt the data there, and 
search the data. If we use weak encryption, then an 
attacker can break the scheme. We therefore 
compromise as follows.  We strongly encrypt the 
records themselves. In addition generate index records.  
These are also encrypted, but not as strongly, in order 
to allow generic pattern searches on the main records 
through the index records. Our contribution in this 
paper is an index encryption method that makes the 
overall storage of the application data secure for 
typical applications. 

The structure of the SDDS records is usually 
assumed to be flat, i.e. to consist of a key and a single 
data (non-key) field. Techniques like the one of 
Agrawal et al. [AKSX04] are appropriate for 
encrypting numeric keys and a fortiori for other keys 
in a relational database table with many fields, but do 
not solve the problem for flat records. Next, in contrast 
to the work by Song et al. [SDW00], we want to be 
able to search for arbitrary patterns, not just words.  
We aim at a unit of search as close as possible to a 
single data symbol without compromising security. 

In more detail, we use Electronic Code Book 
encryption (ECB) on blocks of characters to generate 
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our index records. We further mitigate ECB’s 



susceptibility to a frequency analysis. The way of 
doing this at the index records while reducing the 
overall operational and storage costs of maintaining 
index records is the core of our proposal.  First, we 
enhance the protection of our index records by 
redundancy removal, where we use lossy compression 
to make the encrypted index records look more like 
random data. A side-effect of redundancy removal is 
the creation of false positives that reduce the accuracy 
of string searches. We show the trade-offs between 
search accuracy and the overall strength of our 
encryption. Second, we disperse our ECB-encrypted 
and compressed index records over several sites. This 
limits the amount of information available to an 
attacker at a single site. Our experimental, initial 
results (gained from a hard case) show these trade-offs.  
They do not yet measure the efficiency of dispersion.  

Our threat model worries about data confidentiality 
tha

chieve 
a 

r scheme.  We then 
ex

n about data integrity and availability. We primarily 
protect data against the owners and other users of the 
storage nodes and only incidentally against an intruder. 
We are not concerned with network security e.g. the 
authentication scheme.  For instance, we do not deal 
with the design of the authentication scheme needed. 
We also assume the use of any of the schemes that 
make traffic analysis difficult, e.g. [CGKS95].  

All things considered, our scheme seems to a
medium level of security. It is secure enough to 

defeat a determined attacker with commonly available 
computing resources. It is probably not secure enough 
to withstand an attacker with outstanding computing 
resources and with insider knowledge of the 
underlying data.  In addition, dispersion is vulnerable 
against collusion among those storing index records. 
However, in an SDDS environment, collusion should 
be rather difficult since a nodes does not have access to 
the data dispersion scheme and consequentially cannot 
easily determine the other nodes where a particular 
index record has been dispersed.   

Below, we give the details of ou
plain redundancy removal from the index records 

and index record dispersion. Next, we describe the 
complete scheme.  Finally, we propose methods for 
assessing security and give a preliminary evaluation. 
We use an extract from the San Francisco phone book 
consisting only of names and numbers. This is a 
difficult case for our scheme because the records are so 
small consisting only of a full name and a phone 
number.  

 

2. Basic Scheme 
 

A record consists of a key, that is the Record 
Identifier (RI) and of the Record Content field (RC) 
(Figure 1). We assume that the key is artificially 
created number and not sensitive information.  The RC 
field is a flat, zero terminated string consisting of 
symbols, typically either 8-bit ASCII symbols or 16-bit 
Unicode symbols. We store the database (collection of 
records) as an SDDS over multiple sites in strongly 
encrypted form. We then generate the index records as 
follows. We chunk an RC into chunks of equal length. 
We then encrypt each chunk using Electronic Code 
Book (ECB) encryption. This is our Stage 1.  

ECB allows (at least in principle) frequency 
analysis. We strengthen the encryption by two 
different methods: First, we remove redundancy 
through lossy compression, that is, we preprocess the 
symbols by placing them into a smaller number of 
buckets and encode them by bucket number.  This 
introduces false positives, but makes attacks on the 
encryption more difficult.  This is our Stage 2.  
Second, since even removing redundancy from the 
original records might not be sufficient, we disperse 
the index records over several sites, our Stage 3, in 
order to limit the amount of information available to 
the attacker at any single site.  We illustrate our 
scheme in Figure 3. 

 
2.1. Creation of Index Records, Stage 1  

 
From a single RC, we create s “chunked” RC made 

up of chunks of s consecutive symbols in the following 
way:  Assume that the RC is (r0, r1, r2…rN).  The first 
file consists of the chunks  (r0, r1 … rs-1),  (rs,rs+1 … r2s-

1), … Thus, chunk i is made up of (r(i-1)s,  r(i-1)s+1, … ris-

1).  If necessary, we pad the last chunk with zero 
symbols (denoted by 0) to create the last chunk.  The 
second chunked RC starts the chunking with an offset 
of one instead of zero.  Thus, this chunked RC is (0,0, 
…, 0, r0), (r1, r2,…, rs), …  Chunk i is (r(i-1)s+1,  r(i-1)s+2, 
… ris).  We similarly proceed to create the chunking 
for chunked RCs 2, 3...s−1. We then use Electronic 
Code Book (ECB) encryption on all the chunks in the s 
chunked RC records to generate s encrypted, chunked 
RC.  (Basically, ECB uses standard secret key 
encryption to generate a seemingly random, reversible 
mapping of clear-text chunks to encrypted chunks of 
the same size.) We store the s RC on s different sites.    

Beginning and ending chunks can create a security 
problem. For example, a beginning chunk in the 
second chunked RC has the form (0,0,…0, r0).  This 
can be recognized because there are at most as many 

 
Figure 1: SDDS Record Structure 

RI RC 



encrypted first chunks than there are symbols and 
exploited through an elementary frequency attack.  The 
gained decoding can then be used to speed up 
password cracking on the ECB or might prove useful 
all by itself. A simple counter-measure such as not 
storing these “partial” chunks limits our search 
capability, but is otherwise perfectly feasible.   

 
2.2. Example 
 

Assume that we chose s = 4, a rather low value that 
might allow a successful frequency analysis. Assume 
that our RC is “ABCDEFGHIJKLMNOPQR 
STUVWXYZ”.  Then, the first chunked RC consists 
of  “(ABCD),(EFGH),(IJKL),(MNOP),(QRST), 
(UVWX), (YZ00),” the second chunked RC of 
“(000A), (BCDE), (FGHI), (JKLM), (NOPQ), 
(RSTU), (VWXY), (Z000)”, the third RC of “(00AB), 
(CDEF), (GHIJ), (KLMN), (OPQR), (STUV), 
(WXYZ)”, and the fourth one of “(0ABC), (DEFG), 
(HIJK), (LMNO), (PQRS), (TUVW), (XYZ0)”. To 
generate the encrypted RC, we encrypt each chunk 
individually. 

 
2.3. Searches 

 
To search for a substring (q0, q1, … ql-1), we create 

all possible chunkings of this string.  Assume that l = 
x⋅s+y. Then we create the chunking series (q0, q1, … 
qs-1), (qs, qs+1, …, q2s−1), … (q(x−1)s, q(x−1)s+1, …qxs−1); (q1, 
q2, …, qs), (qs+1, qs+2…, q2s), … , (q(x−1)s+1, q(x−1)s+2, 

…qxs); … Here we only include chunks into the s series 
that consists entirely of s substrings of length s of the 
search string.  We then send all series to all the sites, 
who try to match consecutive chunks.  If the substring 
is contained in the record, then all sites indeed report a 
hit.  However, since we do not search for the complete 
string at all sites, some sites might report a false 
positive.  It is not possible that a search results in false 
positives from all sites.   

Unfortunately, our search strategy does not work 
for search strings of length less than s.  We can 
“kludge” a search strategy for search strings of length 
s−1 by adding all possible characters to the end of the 
string.  This method is wasteful and might pose a 
security risk if an attacker snoops network traffic. 

 
2.4. Example (Continued) 
 

Assume that we want to search for the string 
``BCDEFGHIJK''.  We produce all possible s = 4 
chunkings of this string (without zero symbols). That 
is, we produce the following chunked search strings: 

• (BCDE)(FGHI) 
• (CDEF)(GHIJ) 
• (DEFG)(HIJK) 
• (EFGH) 

We then send all the chunkings to any one of the 
storage sites. Site 1 will have a hit for the fourth string; 
Site 2 will have a hit for the third search string; etc.  
We observe that each chunked search string has a hit 
in exactly one index record. In general, each chunked 
search string has to be found in one of the index 
records, because of false positives or because of 
repeating characters, there might be more hits.  This 
shows that we could use less storage or less search 
strings, but in this case, it is possible to have false hits.  
For example, assume that we only use one storage site. 
As our example shows, the string “ACDEFGHI” will 
generate the same hit for storage site one − if that is the 
one we picked – as our original search string because 
the critical chunked search string, number 4, is the 
same as that generated from the original search string. 

 
2.5. Limiting Storage Overhead 

 
Our basic scheme stores the same data in s sites and 

creates and searches for s search strings for every 
search operation.  We can avoid this overkill at the 
costs of a small increase in false positive hits.  For 
example, assume a chunk size of s = 8.  We can decide 
on 4 storage sites, containing the following chunkings 

  (r0, r1, … , r7), (r8, r9, …r15), (r16, r17, … r23), …  
  (0, 0, r0, r1, … r5), (r6, r7, …,r13), (r14, r15, …, r21), … 
  (0, 0, 0, 0, r0, … r3), (r4, r5, …r11), (r12, r13, … r19), … 
  (0, 0, 0, 0, 0, 0, r0, r1), (r2, r3, …r9), (r10, r11, …r17), 
… 
for each record D-field.  When we search for substring 
(q0, q1, … ql-1), we generate two search chunkings 
        (q0, q1, … qs−1), (qs, qs+1, … q2s-1), … 
        (q1, q2, … qs), (qs+1, qs2, … q2s), ... 
and send both to all the sites.  For each occurrence of 
the substring, only one site will report a hit.  Thus, 
false positives will be more numerous.  In addition, 
using four data sites implies that the length of the 
search string needs be at least s+1.   

Alternatively, we can use only two storage sites, but 
now have to send four search strings.  The minimum 
length of a search string is now s+3. 
We give a simpler example in Figure 2, adapted from 
our telephone database that we use as a base for our 
experimentation. The records has identifier RI = 007 
and consists of a (fake) telephone number and a name.  
We use underscores to denote the space.  When we 
search for the last name “Schwarz”, we should actually 
search for “ Schwarz ” with a leading space and a 



trailing zero.  Since we generate two index records 
with chunk size 4 (Figure 2a), we only need to 
generate two index search records (Figure 2b).  When 
we actually perform the search, we have a hit for the 
first search string in the second index record.   

 
Figure 2a: Example Record Chunking 
 

 
Figure 2b: Search Strings  
Figure 2: Search Example 
 
3. Redundancy Removal (Stage 2) 

 
Separating record store sites and record index sites 

is motivated by the possibility to compress the index 
records, but mainly because a lossy compression of the 
index records makes a frequency analysis more 
difficult.  We use the following strategy for a lossy 
compression.  Assume that we start out with 2f 
symbols.  If our symbols are ASCII characters, then f 
=8 and we start out with 256 symbols. Assume a chunk 
size of g symbols. Since we want to retain the 
capability for searching, we replace each chunk by a 
smaller chunk.  For example, we might decide to map 
each chunk consisting of 4 byte-symbols by a chunk of 
16 bits only.  When we pick the mapping, we try to 
equalize the frequency for each nibble, both in order to 
make a frequency attack more difficult and in order to 
limit the new false positives in searches that lossy 
compression creates.  In order to come up with a good 
mapping, we can preprocess a representative part of 
the database and count the occurrence of each chunk.  
We then place these characters into buckets, one for 
each encoded symbol, in order of frequency of 
occurrence. For small chunk sizes, this will not 
necessarily result in an equal frequency distribution of 
the encoded symbols, but it will certainly remove the 
larger frequency spikes.  For example, the frequency 
distribution of letters in English text is well known 
[PE82].  Were we to create a lossy encoding of letters 
only in only 3 bits, then each encoded symbol should 
occur at a frequency of 1/8 = 12.5%. But the letter “E” 

alone already accounts for 12.702% of all occurrences. 
Our procedure becomes impossible for larger chunks 
sizes simply because there are just too many possible 
chunks. In this case we can at least preprocess the 
records encoding each symbol into a smaller one or 
using the same procedure for subchunks.  

 
4. Dispersion of Index Site Records over 
Several Sites (Stage 3) 

 
A chunked record in encrypted form still contains 

the same information that the original record has.  To 
reduce the amount of information to an attacker 
(assumed primarily to have access to a single site), we 
can divide the information contained in it and store it 
on separate sites.  We now propose a way to disperse 
the index records over k sites. A good value for k 
needs to divide the chunk size in bits and be small 
enough to limit the number of false hits (as we will 
see).  For this reason, a good value for k would be 2 or 
4.  

Assume then that the chunk size is c = s⋅f bits, 
where s is – as above – the number of characters in 
each chunk and 2f is the number of characters.  k has to 
be a divisor of c.  Write c = g⋅k.  We construct a Galois 
field (finite field) Φ = GF(2g).  In short, the elements 
of Φ are bit strings of size g.  Addition and subtraction 
are defined as the bitwise XOR of two operands.  
Multiplication and division are more involved 
operations, but there exist a number of good methods 
to implement them in the literature.  The rules of 
algebraic manipulations in the field of real numbers, 
complex numbers, rational numbers, etc. apply as well 
in Φ.  Let E be an invertible k by k matrix over Φ. A 
good E seems to be one where all coefficients are non-
zero. (Since k is small and g is larger than k, such 
matrices exist in abundance, e.g. as Cauchy matrices of 
Vandermonde matrices.) Let c be a chunk, i.e. a bit 
string of size c.  By breaking c up into pieces of size g, 
we can write c as a row vector of dimension k in Φ: c = 
(c1, …, ck).  We then calculate (d1, …, dk) = d = c⋅E for 
each chunk in a index record.  We then store d1 in the 
first site, …, and dk in site k.   

 We could use other ways of breaking up chunks 
and distributing them to different sites.  Since we only 
need to tell whether chunks are the same or not, any 
dispersion algorithm (such as erasure correcting codes 
popularized as IDA [Ra89]) that maintains the same 
information as in the original chunk will do.  Our 
encoding seems to be appropriate because it is fast (if 
Galois field multiplication can be implemented by 
small tables) and because a dispersed symbol di is 
calculated from the whole chunk and not just a piece of 

4593598_THOMAS_SCHWARZ0000000 007

007 4593598_THOMAS_SCHWARZ0000000

004593598_THOMAS_SCHWARZ00000 007

_SCHWARZ0 

_SCHWARZ SCHWARZ0



the chunk.  This makes a frequency analysis on the 
contents of one of the dispersion sites more difficult. 

To implement a search, we break the chunks in the 
search string up according to the same rules.  We then 
send the broken up pieces to the dispersion sites.  If all 
dispersion sites containing dispersed chunks from the 

same index record report a hit in the same location, 
then the search string is contained in the index record 
at that location.  However, since each dispersion site 
contains less information than the original index site, 
we can expect to increase the number of false 
positives. 

 

 
Figure 3: Generation of Records in our scheme:  A single record is stored here at 9 different sites.  
One site, the record store site, contains the record in strongly encrypted form.  The other 8 sites, 
the record index sites, contain the result of dispersing the preprocessed chunks of the records, 
generated from two different chunkings. The number of chunkings and the ratio of dispersion are 
application specific parameters. 
 
5. The Complete Scheme 

 
Figure 3 gives an overview of the record storage 

in our scheme. A given record is identified by a 
unique RID that we presume is not security sensitive. 
This RID tags all records that we will ultimately store 
(indicated by the gray boxes.)  We maintain one copy 
of the record in strongly encrypted form (upper right 
corner).  To generate the index records, we use in this 
example only two different chunkings. Before or 
after the encryption, we can use lossy compression in 
order to reduce the size of the index records, but also 
in order to even out frequencies of encrypted chunks. 
Finally, we disperse the chunked records over a 
number of dispersion sites.   

In order to search all data fields, we first need to 
create chunkings of the index string. The number of 

chunkings depends on the number of record 
chunkings and the number of symbols in each chunk.  
For example, if each chunk consists of eight symbols 
and we use two chunkings of the records, then we 
need to chunk each index string four times.  Next, we 
use the same encoding to compress the index string 
chunkings.  Finally, we send the compressed index 
string chunkings to all dispersal sites.  These report 
back their hits.  If all dispersion sites belonging to a 
certain record chunking – enclosed by the same gray 
rounded boxes in Figure 3 – report a hit at the same 
offset, then this is reported as a hit to the client.  It 
will depend on the type of data and the size of the 
system whether it is not advisable to elect a leader 
among the dispersion sites to filter out false positives.  
The client eventually receives all hits in the form of a 
list of RIDs.  (In order to avoid a traffic analysis, 

Record RID 

Encrypted record RID

these lists are not transmitted in the clear, but rather 

RID Chunked Record 1 RID Chunked Record 2 

RID RID 

RID RID 

RID RID 

RID RID 

1:4 Dispersion of chunked, preprocessed 
records 

Index Records 

Processed Chunked Record 1 RID Processed Chunked Record 2 RID



in a way that hides the size of the list to a snooper.)  
It then requests the corresponding records from the 
corresponding record store site. 

As an aside, a standard SDDS such as LH* or its 
hig

6. Evaluation of the Scheme 

able 1: χ -values for the SF Phone Directory 

χ2 (Single Letter) 2,071,885 

h-availability version LH*RS is used to store index 
records and the records themselves.  The keys for the 
index records are made up of the RID and the 
chunking identifier and the dispersion site identifier 
(3 bits in Figure 3) appended as the least significant 
bits to the RID.  In this way, index records belonging 
to the same original record will be stored in different 
LH* buckets if the number of LH* buckets is greater 
than 8.  
 

 
Figure 4: Extract from SF Phone Directory 
Database (Numbers changed) 
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χ2  (Doublets) 10,725,271 
χ2  (Triplets) 40,450,503 

A 11.1% 
E 9.89% 
N 8.55% 
R 7.55% 
I 6.98% 

O 6.27% 
AN 3.21% 
ER 2.33% 
AR 2.11% 
ON 1.87% 
IN 1.71% 

CHA 0.69% 
MAR 0.64% 
SON 0.50% 
ONG 0.50% 
ANG 0.49% 

 
eally, the contents of the dispersed, chunked, 

an

7. Preliminary Experimental Results 

e use a telephone database as a test case.  
Be

effects of dispersal alone.  Our 
rec

Id
d preprocessed index records are indistinguishable 

from random bits.  Knuth’s seminal work [K99] 

discusses a number of statistical tests for randomness, 
and the work at the National Institute of Standards 
and Technology (NIST) [R&al01, S99] used similar 
statistical tests in the context of selecting a code for 
the AES standard.  Weaker, though probably strong 
enough would be a proof that the information 
contained in a (dispersed) index record is too small.  
In general, a letter in an English text contains 
between 2 and 3 bits of information [S51], thus 
storing only 2 bits for each byte should be safe.  
However, things are not so simple.  In one of 
Shannon’s experiments [S51], he gave a human 
subject one hundred characters of an English text and 
asked them to guess the next character; in this 
manner he showed that the information contained in 
a single letter is closer to a single bit. (See [MGR98] 
for a further study of entropy in English texts.) If we 
would have to disperse English text at the rate of 1:8, 
then the resulting index records would contain so 
little information to hand out a large number of false 
positives for every search.  In addition to these 
difficulties, our database does not contain text from 
books written in English, but generic data with 
presumably very different entropies.  Thus, it appears 
that we need to settle for index records that are 
provably close to being true random numbers.  

 

ADRIAN CORTEZ%%%%%%%%%%%%%415-409-0271$$ 

 
W
cause the entries are very short – they only consist 

of names and are indexed by the telephone number – 
our example is a very bad case for our scheme.  We 
obtained a telephone directory San Francisco in 
California.  The directory is intended for lookup with 
a web-browser.  We therefore processed the records 
to give us flat records containing the telephone 
number as the RID and the name of the subscriber as 
the RC.  We were as yet not able to break the 
encoding to include address information.  The names 
are in capitalized letters.  Because of the heavy 
presence of Asian names, the frequency distribution 
of letters is somewhat unusual. Table 1 gives the χ2-
values for single characters, doublets, and triplets in 
the 282,965 entries large SF White Pages Phone 
Directory and lists the most common single letters, 
doublets, and triplets. 

We first tested the 
ords use the normal 8b ASCII encoding.  We 

broke the record in chunks of length one and 
dispersed each record into four dispersion records 
using our method with a random non-singular matrix.  
Thus, a dispersion record contained one symbol of 

AFDAHL E%%%%%%%%%%%%%%%%%%415-409-0817$$ 
AKIMOTO YOSHIMI%%%%%%%%%%%415-409-0019$$ 
ALBAREZ G%%%%%%%%%%%%%%%%%415-409-0788$$ 
ALEXANDER GINA%%%%%%%%%%%%415-409-0464$$ 
ALGAHIEM ALI%%%%%%%%%%%%%%415-409-0185$$ 
ALGHAZALY EBREHIM%%%%%%%%%415-409-0723$$ 
ARBELAEZ LIBIA MARIA%%%%%%415-409-0247$$ 
ARMENANTE MARK A%%%%%%%%%%415-409-0910$$ 



length 2b for each 8b symbol in the original record.  
We abbreviate the 2b symbols 00, 01, 10, 11 as 0, 1, 
2, and 3 respectively.  As we can see in Table 2, this 
particular matrix (nor any other we tested) did not 
achieve an even distribution in the occurrence of 
these four symbols.  Worse, doublets are not nearly 
evenly distributed either.  However, the decrease in 
the χ2-values as compared to Table 2 is encouraging. 

 
2Table 2: χ -values for the SF Phone Directory 

χ2 (Single Letter) 178,849 

after Dispersion. 
 

χ2  (Doublets) 335,796 
χ2  (Triplets) 486,790 

0 33.5% 
1 26.9% 
2 21.8% 
3 17.7% 

00 6.98% 
10 6.27% 
01 3.21% 
20 2.33% 

 
Table 3: χ2-values for the SF Phone Directory 

 
hunk Size = 1 

2 single χ2 double χ2 triple 

after Pre-Processing 

C
# encod. χ

2 .49 1 0 81,631.2 185,329.
4 97.1 166,060 388,997 
8 891.3 640,319 1,908,811 

1 352, *  6 565..8 3,525,940 12,931,474
 

hunk Size = 2 
2 single χ2 double χ2 triple 

 
C

# encod. χ
8 04 2 ,778 0.000,0 14,99 63

16 0.000,009 72,530 439,009 
32 0.000,148 357,046 3,349,997 
64 7,991.6 1 25,013,149 ,359,177 

1 193,821,977 28 159,190 5,786,120 
 

χ2 single χ2 double χ2 triple 

 
 

hunk Size = 4 C
# encod. 

16 ,06 1 177 0.000 5,62 16,
32 0.000,3 23,696 90,309 
64 0.001 92,139 585,739 

1 3 4,099,420 28 0.005 55,383 
 

hunk Size = 6 
2 single χ2 double χ2  triple 

 
C

# encod. χ
16 ,08 4 076 0.000 1,01 5,
32 0.000,5 2,802 37,213 
64 0.001,7 10,015 292,973 

1 2,309,653 28 0.008 34,400 
 

Next  tested t ect of anc  
lone. W

th 

, 

, we he eff  redund y removal
a e used chunks of size 1, 2, 4 and 8.  We did 
not test larger chunk sizes (8 should give much better 
values) because of the difficulties in calculating the 
χ2-values.  In our experiment, we first group all 
symbols into chunks of size n, n = 1, 2, 4, 6.  For 
example, the entry “LITWIN WITOLD” for n = 4 is 
transformed into (“LITW” “IN W” “ITOL”).  We 
then assign an encoding – a number between 0 and 
(2f-1) – to all possible chunks insuring that each 
encoding number occurs with about the same 
frequency.  If the number of possible chunks is small 
compared to the number of encodings, then we did 
not succeed in equal distribution.  Otherwise, we are 
quite successful.  For example, if we use a chunk size 
of 4 and 128 possible encodings, then the χ2 – value 
over the complete database is only 0.005.  Clearly, 
some chunks follow others with much higher 
frequency then others.  If the first chunk is “SMIT”, 
then chances are that the next chunk will start with an 
“H ” and similarly, “MILL” is a good predictor for 
“ER ”. Not unexpectedly, we need larger chunk sizes 
in order to have less inter-chunk predictability.  Our 
complete results in Table 3 show our relative success 
and failure. 

Next, we tested for false positives when searching.  
Because exhaustive searches, we extracted 1000 
random records from the file.  We then searched for 
the 1000 last names in this subset of the database. In 
a first experiment, we encoded individual symbols 
(not chunks) with 8, 16, and 32 possible encodings.  
For example, the actual entry: 

“ABOGADO ALEJANDRO & CATHERINE” 
encoded in 8 encodings (0-7, see Figure 5), yields: 

 “10661260172413246060316524532”. 
We then chunked all the data.  For example, wi
ch

“[10],[66],[12],[60],[17],[24],[13],[24],[60],[60], 
[31][65][24][53]”. 

unk size 2, the record becomes now 

“[06],[61],[26],[01],[72],[41],[32],[46],[06],[03], 
[16][52][45][32]”. 

In the first chunking, we deleted the last
incomplete chunk, in the second one, we deleted the 
first incomplete chunk. 

Obviously, false positives can already result from 
this preprocessing.  Since the letter “B” and the letter 
“V” are encoded both by “0”, a search for 
“AVOGADO” would result in a hit for the record 
“ABOGADO”, though in this case, by chance our 
encoding removes a common spelling error in 
Spanish where “B” and “V” sound the same.  In 
addition, we chunked the records.  Recall that 
chunking is another source of false positives. In 
addition to this source of false positives, chunking 



itself can create additional false positives.  For 
example searching for “ADAMS” might yield a false 
hit in a record with the fictional last name 
“DAMSTER”.  However, we did not count the 
occurrence of “ADAMS” in “ADAMSON” as a false 
positive, since the string “occurs”.  Of course, a 
search with leading and trailing space prevents that 
particular error. 

 

 
Figure 5: Encoding Assignment for 
possible encodings 
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4(a) show a large number of 
false positives.  Closer inspection for a subset of 500 
rec

itives after symbol 
encoding (FP1) and after symbol encoding 

ries 
χ2 single χ2 double χ2 triple FP1 FP2 

 
The results in Table 

ords revealed that most of the preprocessing false 
positives originated from the presence of short names 
such as “Yu” (97 instances, but because it was a 
repeated part of a last name, it caused 485 false 
positives), “Ou” (93 instances of false positives), 
“Ip” (90 instances), “Ba” (87 instances), “Wu” (80 

instances), “Li” (54 instances), and “Le” (54 
instances), which would indicate that the Warsaw 
phonebook might have been a better choice for our 
database.  The false positives due to chunking were 
also caused by short names: “Woo” (125), “Kay” 
(119), “KIM” (115), “Lee” (112), “See” (112) “Mai” 
(111), “LIM” (108), “Mak” (103), “Lew” (102). Our 
results are tabulated in Table 4.  As we can see, for 
our small chunk size of 2, chunking itself created 
most of the false positives (the difference between 
FP2 and FP1 in Table 4).  In fact, searches for short 
strings amount to almost all false positives, as is 
demonstrated by Table 4b. 

 
Table 4: False Pos

and chunking with chunk size = 2 (1000 
records) 
 
(a) All ent
En 

8 1.49 1,800.7 6,064.9 6,253 18,838 
16 1,175 12,450 48,185 911 6,490 
32 11,759 64,665 363,535 0 4,669 

 
 (b) Entries a nger ha
Characters 

with N mes Lo  t n 5 

En χ2 single χ2 double χ2 triple FP1 FP2 
8 2.46 1,137.4 3,757.6 24 41 

16    651.0 7,391.2 31,582 1 13
32 7,388.2 41,115 247,621 0 11 

 
Finally, we ma i men on t

same dataset, but this time, we encoded two-symbol 
ch

de a sim lar experi t he 

unks into n = 8, 16, 32, and 64 possible codes.  For 
example, “ABOGADO ALEJANDRO & 
CATHERINE” creates chunks “[AB], [OG], [AD], 
[O_], [AL], …” and “[BO] [GA] [DO], [_A] [LE], 
…”.  We then collect all these chunks and encode 
them in one of n different ways such that each code is 
taken approximately equally often. In this 
experiment, it turned out that chunking did not create 
any additional false positives; therefore there is only 
one column in Table 5, which contains our results. 
Again, most false positives are caused by searches 
for small names (v. the difference between the FP 
column in Table 5a and Table 5b.)  Both experiments 
show clearly the trade-off between seeming 
randomness and false positives.  We notice that n 
possible encodings in Table 4 correspond to 2n 
possible encodings in Table 5.  Thus, the last line in 
Table 5 describes compressing 2 8bit ASCII 

Symbol Quantity Encoding 
space 503 0 

A 495 1 
E 407 2 
N 383 3 
R 350 4 
I 300 5 
O 287 6 
L 258 7 
S 258 7 
T 200 6 
H 186 5 
M 178 4 
C 159 3 
D 150 2 
U 112 5 
G 108 6 
Y 97 1 
B 87 0 
K 74 7 
J 72 4 
P 71 3 
F 59 2 
W 49 7 
V 45 0 
Z 29 1 
& 14 6 
X 6 5 
Q 5 4 
‘ 1 5 
- 1 5 



characters into 6 bits, the same rate as the last line in 
Table 4. 

We can draw some conclusions from our 
pre

able 5: False Positives after chunk 

) All entries 

χ2 single χ2  double χ2 triple FP 

liminary work.  Redundancy removal works, but 
needs to be supplemented by dispersal, which we 
have not yet tested.  In order to prevent false 
positives from overwhelming true positives, we 
cannot be too aggressive when removing 
redundancy.  It appears that as a next step, we need 
to concentrate on large chunks (five or six characters 
and dispersion should be secure enough for our 
phone-directory case, but still allow searching), and 
modest preprocessing.  
 
T
encoding (FP1) and after symbol encoding 
and chunking with chunk size = 2 
 
(a
 
Enc 

8 0.002 99.7 713.2 48 31,6
16 0.009 447.7 5,498 15,588 
32 0.039 2,069.5 42,377 7,968 
64 20.1 8,129.0 337,306.5 3,857 

 
(b) Entries with last names longer than 5 

χ2 single χ2  double χ2 triple FP 

characters 
 
Enc 

8 .004 73.9 645.4 859 
16 .013 344.4 4,835.5 96 
32 .030 1,643.3 40,052.0 13 
64 13.6 7,066.7 319,355.3 2 

   
8. Conclusions and Further Work 

ur proposal tries to reconcile two seemingly 
irr

int, it would appear that a chunk size of 
6 

of Soto 
[S9

y, Song’s et al. method of encrypting while 
all
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O

econcilable desires: to protect data while allowing 
arbitrary string searches. We make inroads by 
restricting the attack model and splitting our data in 
strongly encrypted records and index records used 
only for searching.  We create the index records 
using an ECB, but use lossy compression and 
dispersion in order to make the result look more like 
random strings.  If we were to make them look like 
random streams, then the standard attack tool against 
ECB, frequency analysis, cannot work.  However, 
even codes that do not reach this goal might be quite 
secure, but it is very difficult to assess the strength of 
the code. Our results indicate that redundancy 
removal is indeed successful in letting the index 
records appear to be more random.  However, the 

results do (not yet?) justify more than cautious 
optimism.   

At this po
ASCII characters together with dispersing index 

records into 3 records might already result in a 
reasonable secure code. Analyzing the resulting 
encoding is quite difficult, since we have to deal with 
86 = 224 possible chunks (assuming ASCII data) and 
hence deriving the double χ2-value is challenging.  
Currently, we are investigating the impact of 
dispersion.  We will also need to investigate other 
types of lossy compression of the index records that 
still allow for searches (see [GN99], [M97]).  

Currently, we are starting to use the work 
9] in order to evaluate closeness to randomness in 

a better manner.  Simultaneously, we are pursuing 
searchable compression as a main mean of 
redundancy removal.  In contrast to the work 
reported in [GN99] and [M97], our task is simpler, 
since the compression can be (and probably should 
be) lossy. We only need very good, but not perfect 
precision 100% recall and 100% recall for search 
results. 

Finall
owing for word searches should be adapted to our 

system.  
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