
Generalized Reed Solomon Codes for
Erasure Correction in SDDS

THOMAS J.E. SCHWARZ, S.J.
Santa Clara University, USA

Abstract

Scalable Distributed Data Structures (SDDS) need scalable availability. This
can be provided through replication, which is storage intensive, or through
the use of Erasure Correcting Codes (ECC) to provide redundancy, which is
more complicated. We calculate availability under both strategies and show
that redundancy through use of an ECC implies significantly less overhead.
We introduce a generalized Reed Solomon code as an ECC that uses ordinary
parity (XOR) for the first level of redundancy, and adapts to the scaling up
and down of an SDDS file. We derive the relevant properties of the ECC
directly and discuss its adaptation to the changing needs of a SDDS.

Keywords

SDDS, erasure correcting code, Reed Solomon codes, SDDS failure tolerance

1 Motivation

Multicomputers (collections of computers connected by a high-network) com-
bine affordability and high performance, but also require new data structures and
algorithms. Scalable distributed data structures (SDDS) harness the power of mul-
ticomputers for data storage. SDDS store data in buckets at distributed sites (in
RAM, local disks, network attached storage devices etc.). A SDDS file grows
by generating new buckets at different sites. They allow key-based and possibly
range based look-ups and through function shipping parallel scans and process-
ing. Operation costs remain constant as a SDDS file grows and spreads over more
sites. The SDDS LH* uses distributed RAM memory and offers look-up times
using current network technology of less than 1 msec [B90] while allowing file
sizes that could centrally only be stored on a disk.

Unfortunately, assembling the resources of a multicomputer brings vulnerabil-
ity against individual node failures. An SDDS typically cannot tolerate unavail-
ability of even small portions of its data and the overall availability of the SDDS
(the probability that all data is accessible) is at best the product of the availabilities

75

76 DISTRIBUTED DATA AND STRUCTURES 4

of the individual buckets. In order to maintain the same level of overall availabil-
ity, the availability of the individual buckets needs to increase as the file scales up.
We call this SDDS property scalable availability.

We can use replication (mirroring, triplicates, higher number of copies) to
safeguard the data in a bucket against failures, but the storage overhead quickly
becomes prohibitive. We develop here another possibility, the use of erasure cor-
recting codes. We group n buckets in a (reliability) group and add m (generalized)
parity buckets to the group. We use an erasure correcting code (ECC) to generate
the contents of the parity buckets. We can reconstruct the data of any failed data
bucket by accessing a quorum

�
n of data or parity buckets. The availability of

the data in a single bucket using this technique is significantly higher than using
replication for the same storage overhead. This is particularly the case if the quo-
rum is exactly n and the size of the parity buckets is the same as the size of the
client data buckets. In this case, the storage overhead n � m

m is exactly the minimum
redundancy needed to provide m-availability. Other properties of an ideal erasure
correcting code are low parity calculation and low reconstruction complexity.

The simplest ECC code is the parity code which stores the parity (XOR) of all
data buckets in one parity bucket. We reconstruct any failed data bucket as the par-
ity of the remaining buckets in the group. This code only provides 1-availability
(protection against a single failure), but has the fastest possible encoding and de-
coding times. We use a generalization of this code, a generalized Reed Solomon
(GRS) code. This code has optimal storage overhead for a given availability level,
decent encoding and reconstruction complexity and offers a large number of pos-
sible parity buckets. In addition, changes as little as a byte change are reflected
in the update of a single parity byte, which is important if we store records and
small objects.

2 System Availability

An SDDS file fails when it experiences data loss. We distinguish between central
component failures (e.g. network) and failures of individual nodes. The former
are catastrophic since they allow no recovery. We only calculate the Mean Time
to Failure resulting from the latter failures. The true MTTF is roughly 1/MTTF1
+ 1/MTTF2, where MTTF1 is the time to a catastrophic failure and MTTF2 is the
result of calculations in our simplified model.

The SDDS file is stored in a number of reliability groups with n data buckets
and m parity buckets stored at different nodes. If n � 1 the file uses replication
with m mirrors. Each node fails at a given rate λ � If a node failure is detected and
the data can be replaced on a hot spare, we have repaired the failure. The repair
time (including detection) is assumed to be exponentially distributed at a rate ρ �
This assumption is unrealistic, but does not distort the true MTTF value too much.

Schwarz: Reed Solomon Codes for Erasure Correction in SDDS 77

State 2 State 1 State 0
� �� � n � 1 � λ nλ

ρ

Figure 1: Markov model of a reliability group with n data and one parity bucket.

2.1 MTTF Calculations

Because we assume constant failure and repair rates, we model the survival of an
SDDS with a Markov model. A Markov model consists of various states reflecting
the current state of the system. The system makes a transition to another state
whenever something happens (e.g. a failure, reconstruction of data on a hot stand-
by), these occur with fixed transition probabilities.

Figure 1 gives the Markov model for the case m � 1 � In the initial state 2, all
buckets function. With probability λ per time unit, any one of the n � 1 buckets
becomes unavailable. The system then enters into state 1, where all the data is
available but the redundancy is zero. Since there are n � 1 buckets that can fail,
the transition rate is

�
n � 1 � λ � The failure is detected and the data is reconstructed

with probability ρ 	 so that the system returns to state 2. However, at a rate of nλ
one of the surviving n buckets fails, so that the system transitions into the failure
state 0. The failure state is absorbing, there are no transitions out of it.

We denote the probability that the system is in state i at time t with pi
�
t �
�

We collect these probabilities in the probability vector ℘
�
t ��� � pn

�
t �
	��
����	 p1

�
t �
���

The probability p0
�
t � to be in the absorbing state,is p0

�
t ��� 1 � ∑ν � n

ν � 1 pν
�
t ��� ℘

is determined by the differential equation d℘
�
t ��� dt � ℘

�
t � A with a transition

matrix A � In our example, we have

dp2
�
t ��� dt 	 dp1

�
t ��� dt � � p2

�
t �
	 p1

�
t �
��� � � � n � 1 � λ �

n � 1 � λ
ρ ρ � nλ � �

The survival probability r
�
t � is the probability that the system is not in the

absorbing State 0: r
�
t ��� p1

�
t �������
� pn

�
t ��� ℘

�
t ���e 	 where �e � � 1 	 1 	��
���
	 1 � t � The

failure probability density is f
�
t ��� d

�
1 � r

�
t ����� dt � Then

MTTF ��� ∞

0
t f
�
t � dt ��� � ∞

0
tdr � dt dt ��� ∞

0
r
�
t � dt �

The Laplace transform of r is Λ
�
r � � s �!��" ∞

0 r
�
t � e # st dt � Obviously, MTTF � Λ

�
r � � 0 ���

We take the Laplace transform of d℘
�
t ��� dt � ℘

�
t � A and obtain

sΛ
�
℘� � s ��� ℘

�
0 �$� Λ

�
d℘� dt �%� Λ

�
℘� � s ��� A

Setting s � 0 we have � ℘
�
0 �$� Λ

�
℘� � 0 ��� A and hence

MTTF �&� ∞

0
r
�
t � dt ��� ∞

0
℘
�
t � dt �e � Λ

�
℘� � 0 ���e ��� ℘

�
0 ��� A # 1 �
�e �

78 DISTRIBUTED DATA AND STRUCTURES 4

m MTTF
0 1 � λ
1 1'

n � 1 (λ � ρ'
n � 1 (nλ2

2
� 1

n � 2 � 1
n � 1 � 1

n � 1
λ � � 1'

n � 2 (' n � 1 (� 2'
n � 1 (n � ρ

λ2 � 2'
n � 2 (' n � 1 (n ρ2

λ3

3
� 1

n � 3 � 1
n � 2 � 1

n � 1 � 1
n �
� 1

λ � � 1'
n � 3 (' n � 2 (� 2'

n � 2 (' n � 1 (� 3'
n � 1 (n � ρ

λ2� � 2'
n � 3 (' n � 2 (' n � 1 (� 6'

n � 2 (' n � 1 (n � ρ2

λ3 � 6'
n � 3 (' n � 2 (' n � 1 (n ρ3

λ4

Table 1: Formulae for MTTF: λ bucket failure rate, ρ repair rate, n group size, m
number of parity buckets.

m n) 1 n) 4 n) 8 n) 16 n) 1 n) 4 n) 8 n) 16
0 0.001 0.001 0.001 0.001 5e-005 5e-005 5e-005 5e-005
1 26.720 10.689 5.9394 3.1453 0.010 0.004 0.002 0.001
2 951,91 190,400 63,474 18,673 3.071 0.621 0.210 0.063
3 3.82e10 4.36e09 9.25e08 1.58e08 986.54 113.80 24.445 4.268
4 1.63e15 1.17e14 1.65e13 1.68e12 338121 24364 3486 364.6
5 7.26e19 3.46e18 3.39e17 2.14e16 1.21e08 5.80e06 573977 37127
6 3.33e24 1.11e23 7.76e21 3.12e20 4.43e10 1.49e09 1.05e08 4.33e06
7 1.56e29 3.77e27 1.93e26 5.08e24 1.66e13 4.06e11 2.11e10 5.65e08
8 7.39e33 1.34e32 5.17e30 9.05e28 6.33e15 1.16e14 4.51e12 8.06e10
9 3.55e38 4.97e36 1.46e35 1.74e33 2.44e18 3.44e16 1.02e15 1.24e13

Table 2: Sample Mean Time to Failure in years (λ � 1 per year, ρ � 6 � 25 per hour
(left) and λ � 20 per year, ρ � 1 per hour) depending on group size n and parity
buckets m per group. The numbers represent the MTTF for 1000 buckets.

This calculation reduces the MTTF calculation ot matrix inversion. Typically,
℘
�
0 �*� � 1 	 0 	��
�
� 0 � so that the MTTF is the negative of the sum of the top row

of the inverse of the transition matrix. In our example, MTTF � ρ � � n � 1 � nλ2 �
3 � 2λ � We apply our calculations to calculate the MTTF of a reliability group
with n data buckets and r parity buckets. Repair of a failed bucket is possible as
long as there are a total of n (data or parity) buckets available. Replication is the
specialization n � 1 and r + 1 � We give the formulae for the first four values of
m in Table 1. The typical failure rate of a bucket is at worst several times a year
but the typical repair time is in minutes. In consequence, the ratio ρ � λ is large,
and the addend with the highest power of ρ � λ dominates the expression. Since
the MTTF of L replicated buckets is 1 � L of the MTTF of an individual buckets,
we can compare the MTTF of a reliability group with n data buckets to that of
a replicated bucket by dividing the former by n. We give sample values (with a
failure rate of 1 per year (20 per year) and repairs every 9.6 minutes (every hour))
in Table 2.

Schwarz: Reed Solomon Codes for Erasure Correction in SDDS 79

p n � 1 n � 2 n � 4 n � 6 n � 8 n � 10
0.2 0.000 0.000 0.073 0.522 0.831 0.945
0.1 0.000 0.157 0.898 0.992 0.999 1.000

0.01 0.905 0.998 0.999 1.000 1.000 1.000

Table 3: Survival probability of a 1000 bucket SDDS file.

2.2 Related Failures

Mean Time to Failure calculations assume independent failures (and repairs). We
model common causes by assuming that all buckets fail with a given probability p
and calculate the survival of the system, that is, the probability that in any group
of n � m buckets n survive. If the individual survival rate 1 � p is smaller than�
n � m ��� n 	 the survival of a group has probability less than 1 � 2 � For larger survival

rates, the odds for group survival increase with larger n at fixed ratio of n � m � n �
In Table 3, we calculate the file survival rate for different group sizes n and for
different individual site failure rates p � We again observe that larger group sizes
result in better file survival. This is a consequence of the law of large numbers.

2.3 Conclusions

The MTTF for groups with several parity buckets quickly becomes fantastic be-
cause we do not take failure of essential components into account. Despite this
caveat, our results show that adding a parity data to an existing reliability group
increases MTTF considerably. A given number of parity storage overhead is thus
best divided among few groups. Larger groups protect even against common fail-
ures. A designer has to balance these gains against the increasing complexity of
parity generation and data reconstruction of larger groups. The ratio

�
ρ λ � m con-

tributes most to the MTTF and shows the importance of fast repair.

3 Implementation of Galois Fields

Galois fields are finite sets together with an addition and a multiplication that
obey the arithmetical rules (associativity, distributivity, etc.) of the real numbers,
the complex numbers, and the rational numbers. They have a zero element 0 and a
one element 1. Two Galois fields with the same number of elements are essentially
(”up to isomorphy”) the same and we call the Galois field with l elements GF

�
2l ���

Because computers use bits, we use a Galois field F � GF
�
2l � The elements of

F are all possible bit strings of length f � The addition in F is the bitwise XOR
(exclusive-or) of two strings. The zero element 0 is the bitstring 00 �
��� 0 � Since
x , x � 0, each element is its own negative and subtraction is the same as addition.

80 DISTRIBUTED DATA AND STRUCTURES 4

The mathematically preferred way to define multiplication in F is to interpret
all bit strings as polynomials of degree f with coefficients 0 or 1 � For example, if
f � 8 	 the byte 00100011 corresponds to the polynomial t5 � t � 1 � We choose a
generator polynomial, which is a binary polynomial of degree f � 1 that cannot
be expressed as a non-trivial product of two bionary polynomials. To multiply
two elements of F 	 we multiply the corresponding polynomials, then divide with
remainder by the generator polynomial. The product is the string corresponding
to the remainder. The whole procedure can be implemented using f � 1 left shifts,
f � 1 bit testing, and up to 2 f � 2 XORs.

Instead of this expensive procedure, we use look-up tables. The straightfor-
ward approach is a two-dimensional multiplication table. The storage cost is 2 f �
2 f entries for a total of f � 22 f � For f � 8 	 this amounts to 64KB. A lookup costs
an integer multiplication, two additions, and a load.

To limit the size of the table, we can use logarithms. First, we pick a primitive
element α 	 that is, all nonzero elements β can be written as β � αi � i is a uniquely
determined number between 0 and 2 f � 1 � We say i � logα

�
β � and call i the loga-

rithm of β (with respect to α ��� We call β � antilogα
�
i � the antilogarithm of i � For

convenience’s sake we put � ∞ � logα
�
0 � and 0 � antilogα

� � ∞ �
� Since logα
�
γ � δ �� logα

�
γ ��� logα

�
δ � mod 2 f � 1 	 we can implement multiplication according to

γ � δ � antilogα
�
logα

�
γ ��� logα

�
δ �
� if γ 	 δ -� 0 and 0 otherwise

by using a table of logarithms and one of antilogarithms. We implement this with
three table look-ups, two tests for equality of zero, and an addition modulo 2 f � 1 �
The latter operation itself costs an integer addition, a check for overflow and
possibly a subtraction. We can avoid this awkward operation by storing the an-
tilogarithm of all possible sums of logarithms. The antilogarithm table then has
2 � � 2 f � 1 � entries and the logarithm table 2 f � 1 entries for a total of 3 � 2 f � For
example, in the case of byte-sized elements

�
f � 8 � the table storage is 0.75KB.

The costs of multiplication are two checks for equality to zero, three lookups
into a one-dimensional table, and one integer addition. Thus, the system uses two
checks for equality, four additions, and three loads for a total of nine elementary
operations.

We can implement division in an analogous way. However, since we need
division only rarely, we can implement the division operation by an inversion
followed by a multiplication. Since γ # 1 � antilogα

�
2 f � 1 � logα

�
γ �
��	 inversion

takes two table-lookups and a subtraction for a total of five elementary operations.
Our implementation has constant time complexity and exponential storage

complexity (pace the otherwise superb [BFT98].) Even though we do not believe
that in practice one has to go beyond byte-sized Galois field elements, we give
by example a method to deal with larger Galois field elements without a corre-
spondingly large table. Assume that f is divisible and let g be a divisor so that
gh � f � Each bit string of length f consists h strings of length g � We write a string
of length f as the concatenation . sh # 1 	 sh # 2 	
���
��	 s0 / of h strings si of length g � We

Schwarz: Reed Solomon Codes for Erasure Correction in SDDS 81

x1 0 j x2 0 j x3 0 j x4 0 j Parity
Calculation x5 0 j x6 0 j

Data Streams Parity Streams1111 22

Figure 2: Generation of Parity Streams from Data Streams

implement Galois field arithmetic on the strings of length g � We call the resulting
field G to distinguish it from the field with elements of length f 	 which we call
F � Let p

�
x �3� xh � ph # 1xh # 1 � ph # 2xh # 2 �4���
�5� p1x � p0 be an irreducible poly-

nomial with coefficients in G � Algebra assures us that such polynomials always
exist. We now introduce Galois field operations on the bit strings of length f � Ad-
dition and subtraction are both the Exclusive Or (XOR) operation. We multiply
two strings . 0 	 0 	��
�
��	 0 	 s0 / and . 0 	 0 	
�
���
	 0 	 t0 / as . 0 	 0 	��
���
	 0 	 s0t0 / 	 where we use the
multiplication in G � We identify the bit string . sh # 1 	 sh # 2 	��
����	 s0 / with the polyno-
mial sh # 1xh # 1 � sh # 2xh # 2 �4�
���6� s1x � s0 � We now multiply two elements of F as
polynomials, and reduce the result by p � This can be achieved with 2h2 � h � 1
multiplications and 2h � 2 additions.

4 Definition of GRS Codes and Application to SDDS

Generalized Reed Solomon codes belong to a wide class of linear, algebraic block
codes. We use them to provide generalized parity streams to n streams of data. The
data streams are bit streams, but we group f bits together as a symbol, so that the
streams are now streams of symbol. We define a Galois field F over these sym-
bols and use it to generate the parity streams from the data streams as illustrated
in Figure 4. To simplify notation we assume that we have data streams i � 1 	
���
��	 n
and parity streams i � n � 1 	��
��� n � m � We write stream i as

�
xi 0 0 	 xi 0 1 	 xi 0 2 	
�
��� ���

We form a data word �xr � � x1 0 r 	 x2 0 r 	
���
��	 xn 0 r � from the symbols in parallel posi-
tion in all the data streams. For each data word, we calculate a code word �yr ��
x1 0 r 	 x2 0 r 	
���
��	 xn 0 r 	 xn � 1 0 r �
��� xn � m 0 r ��� The last m coefficients in the code word are

the parity symbols.

82 DISTRIBUTED DATA AND STRUCTURES 4

4.1 Generator Matrix Definition and Existence

For the code word calculation we use a generator matrix G with coefficients in
F defined by the following properties: (1) G has n rows and m columns. (2) The
first n columns of G form the identity matrix. (3) All coefficients in the n � 1st

column are one. (4) Any n 7 n matrix formed of any n different columns of G is
invertible. We make the following important observation:

Theorem 1 There exists a generator matrix with properties (1) to (4) for m �
2 f � 1 �
Proof. Let V be the n by 2 f Vandermonde matrix formed by all 2 f elements8

r j 9 of F, i.e. V � � vi 0 j � 1 : i : n 0 1 : j : 2 f � � ri # 1
j �
� Row i is formed by the i � 1st

power of the elements of F � We append one additional column
�
0 	 0 	
�
��� 0 	 1 � t to

V. It is well known that any n by n submatrix of V has a non-zero determinant
and is therefore invertible ([MM69], 2.4.10). In particular, the first n columns
v j are linearly independent. We write vn � 1 � ∑n

j � 1 α jv j � α j -� 0 as a quotient
of two Vandermonde determinants. We change the first columns v j 	 1 ; j ; n
by multiplying with α j � The resulting matrix still fulfills property (4). Let A be
matrix formed by the newly changed first n columns. We set G � A # 1 � V � Clearly,
G satisfies (1), (2), and (4). Since A

�
1 	 1 	��
��� 1 � t � vn � 1 	 the n � 1st column of G

equals
�
1 	 1 	��
�
� 1 � t � <

4.2 Parity Calculation

Given a data word �xr, we form �yr ���xr � G � Because of property (2), �yr contains
the coefficients of �xr in the first n positions. To calculate the jth coefficient of�yr we need to multiply �xr with the jth column of G. The creation of a parity
symbol costs n Galois field multiplication and n � 1 XOR operations. Since a
site calculates a whole parity stream, the logarithms of the coefficients of G are
used in every operation and can be cached. A site storing parity only stores the
logarithms of the corresponding column of G. The calculation of the first parity
stream is easier because of (3). The symbols in this stream are merely the XOR
of all the data symbols.

Assume that we update a single data stream i. Let �xold
p be the old pth data

word and �xnew
p the new one. �xold

p and �xnew
p only differ in the ith coefficient by a

value δp � Let x j 	 n = j ; n � m be a parity symbol. Write G j for column j of G
and G ' i 0 j (for the coefficient in row i and column j of G � Then xnew

j ���xnew
p � G j� � �xold

p � � 0 	��
����	 0 	 δp 	 0 	��
�
��	 0 �$� G j � xold
j � δp � G ' i 0 j (� Thus, the old and new

parity symbol differ by the change in the data symbol δp multiplied with the
coefficient of G located in the row indexed by the changed data stream and in the
column corresponding to the parity stream.

Schwarz: Reed Solomon Codes for Erasure Correction in SDDS 83

We organize the update of a single data stream by calculating the delta stream�
δ0 	 δ1 	
���
�>� consisting of the differences between new and old value at the data

bucket and then send the delta stream to all the parity buckets together with the
number i of the parity bucket. At the parity buckets, the delta stream is multi-
plied with the generator matrix coefficient found in the row corresponding to the
updated data stream and the column corresponding to the parity stream. This is
similar to the “small write” in disk arrays (RAIDs).

The column number of G limits the total number n + m of data and parity
streams. For LH*RS [LS00] using the Galois field GF

�
256 � elements has the best

performance (a total table size of 768B) while allowing up to 257 streams.

4.3 Data Reconstruction

If one or more streams j1 	��
�
� jl are lost, we need to reconstruct these streams. If
the lost streams are all parity streams, we can of course recalculate them using our
generator matrix G. If one or more of the lost streams is a data stream, we need n
data or parity streams xiν . If these cannot be found, then the file has suffered irre-
trievable data loss. Otherwise, we form a submatrix H consisting of columns iν of
G. Matrix H is invertible. We have �xr � H � � xi1 0 r 	 xi2 0 r 	��
�
� xin 0 r �
� Consequentially,�xr � � xi1 0 r 	 xi2 0 r 	
���
� xin 0 r ��� H # 1 � This reconstructs all data streams.

We can calculate missing parity streams from the generator matrix or use the
following better method. Let A be the matrix consisting of the columns j1 ���
� of
G corresponding only to the parity streams. A is not necessarily a square ma-
trix. Then

�
x j1 0 r 	
�
���
	 x jl 0 r ��� � xi1 0 r 	 xi2 0 r 	
���
� xin 0 r �$� H # 1 � A � The costs of inverting

H only occurs once in the initial phase of reconstruction. For reasonably small
number of streams, this cost amortizes to something negligible over the complete
reconstruction process.

The reconstruction process starts with collecting data on the availability of
streams and the collection of the columns of G stored at participating parity sites.
We form the matrix H and invert it at the site that reconstructs. Since we usu-
ally reconstruct more than a single record, we cache the inverse matrix. The cost
of inversion (negligible for small size H) are thus distributed over many recon-
structed records. We use H # 1 to calculate the reconstructed data symbols and
code symbols from the participating streams. This calculation can be distributed
over the participating sites by letting the sites that contribute a stream perform
multiplications with elements of H # 1 directly before sending them on to the spare
sites, which then merely calculate the parity (XOR) of the arriving pre-processed
streams.

4.4 Variable Group Size

Typically, the number of data streams n is an invariant of the SDDS. The choice of
n is a compromise based on availability needs, storage overhead, reconstruction

84 DISTRIBUTED DATA AND STRUCTURES 4

difficulty, the availability of parity buckets, and parity bucket loads. Some flexi-
bility might prove advantageous. We provide this flexibility within the bounds of
n � m ; Cardinality

�
F �?� 1 fixed by the number of columns in the generator ma-

trix G. We pick a maximum number nmax of data streams. We form a generator
matrix G according to Theorem 1 with nmax rows. For example, if we choose
F � GF

�
28 �
	 then 128 would be a good choice for nmax that still allows 129

parity streams.
We start by creating n = nmax data streams. The remaining nmax � n data

streams are zero. We create an adequate number of parity streams using the right
or parity columns of G. Since the data streams n � 1 to nmax are zero streams, they
do not enter into the calculation of the parities. In consequence, the encoding com-
plexity of the scheme has not changed. Similarly, the reconstruction needs only n
data or parity streams since we always have nmax � n dummy data streams. These
dummy streams do not enter into the actual reconstruction calculation. The recon-
struction only inverts the matrix H consisting of the n columns corresponding to
the n existing streams and the rows corresponding to the n actual data streams.

5 Extension of GRS Codes

We choose a Galois field Ff � GF
�
2 f � to accomodate a maximum of 2 f � 1 data

and parity streams. While not of interest for current SDDS, it is at least theoreti-
cally interesting to observe that this bound can be dynamically expended, though
at the cost of higher parity calculation. We only sketch the procedure.

We embed Ff � GF
�
2 f � in a Galois field F2 f � GF

�
22 f � as in Section 3.

Calculations of elements in Ff are independent of the field in which they are
performed. We form the generator matrix G in F2 f in the manner outlined in
Section 4.1, but so that the first columns of the Vandermonde matrix V are the
powers of the elements in the Ff � The next column of V is

�
0 	 0 	��
�
� 0 	 1 � t � The

remaining columns of V contain the powers of the remaining elements in F2 f �
The Vandermonde matrix over Ff consists of the first 2 f � 1 columns of V. We
form the generator matrix G in the manner described in the proof of Theorem 4.1.
The resulting generator matrix G over F2 f is a n by 22 f � 1 matrix that contains
the 2 f � 1 columns of the generator matrix of over Ff as the first left columns.

A symbol s of the code over F2 f is a bit string of length 2 f and thus the con-
catenation . s0 	 s1 / of two symbols of the code over F2 f � Recall that we identify
element s0 in Ff with element . 0 	 s0 / in F2 f � The definition of addition and multi-
plication in F2 f is such that . 0 	 s0 / �
. t0 	 t1 / ��. s0t0 	 s0t1 / and such that . s0 	 s1 / ,4. t0 	 t1 /��. s0 , t0 	 s1 , t1 / � Therefore, the parity streams among the first 2 f � 1 streams in
the code over F2 f are exactly the same as the parity streams in the code over Ff 	
though the calculation in the first code generates 2 f bits at a time in contrast to
f bits in the code over Ff � The log and antilog tables for multiplication in F2 f

are 2 @ 2 f larger than the tables for Ff � If f is reasonably large, we need to use

Schwarz: Reed Solomon Codes for Erasure Correction in SDDS 85

Operation Time
Even-Odd Update 2.20 µsec

GRS Update 4.89 µsec
XOR Update / Reconstruction 2.20 µsec
RS Reconstruction (2 streams) 31.47 µsec

EvenOdd Reconstruction (2 streams) 6.98 µsec

Table 4: Coding and Encoding Times, AMD 1700+ machine under Win98, 1 � 2KB
records, reconstruction without setup.

the mixed multiplication strategy of Section 3. Then the calculation in F2 f uses 5
multiplications in Ff �

If we start with bit strings of length 8, we can implement a total of 257 streams.
Doubling once yields 65,537 streams maximum and one more doubling yields
more than 4 billion streams. Chances are that we run out of parity servers before.

6 Alternative Codes

Our GRS code is not the only possibility to define storage efficient erasure correct-
ing codes. Array codes [BFT98, X98, XB99] are formed by placing symbols (as
small as bits and as large as disk blocks) from data streams into some positions of
a matrix. Using XOR operations only, the remaining coefficients of the matrix are
calculated and form the parity streams. Evenodd, B- and X-codes generate only
two parity streams but have very fast encoding and reconstruction times. Unfor-
tunately, array codes with more parity streams have comparable reconstruction
times to GRS codes and encode larger portions of data streams at a time as the
number of parity streams increases. We compare Evenodd and our GRS code in
Table 3. GRS is noticeable slower, but still fast enough for encoding and decoding
to become a bottleneck in a 1GB/sec network. If we use only the first parity bucket
to reconstruct a single data stream, then reconstruction for both codes defaults to
calculating the ordinary XOR parity.

The digital fountain project [BL98] optimizes downloads of large files from
several servers. Each file is broken into chunks. Each server sends out GRS en-
coded blocks calculated for the chunks. At the receiving end, once a sufficient
number of blocks has been received, we decode the blocks and regenerate the
chunk. In this way, the digital fountain avoids the need to ask for retransmission
of missed packages. The GRS used for the digital fountain [BK95] uses Cauchy

matrices A 1
ai � a j B i 0 j instead of Vandermonde matrices because the matrices H can

be easier inverted. Doing so limits the maximum number of parity streams.
A very different type of code, Tornado code, can be used for the digital foun-

86 DISTRIBUTED DATA AND STRUCTURES 4

tain as well [BL98]. Tornado codes have very low encoding and reconstruction
complexity, but they need large code words and they have a larger storage over-
head. With other words, if we use Tornado codes, then our parity buckets need to
be larger than in an Array or a GRS code and a single data symbol would be so
long that it contains complete small records. Updating records then incurrs addi-
tional overhead. Future work on ECC should exploit the potential of both Tornado
and array codes.

References
[ABC97] Guillermo Alvarez, Walter Burkhard, and Flaviu Cristian: Tolerating Mul-

tiple Failures in RAID architectures with Optimal Storage and Uniform
Declustering. ISCA 1997, Denver, pp. 62-72.

[BL00] Fethi Bennour Sahli et al.: Scalable Distributed Linear Hashing LH*LH Un-
der Windows NT, IEEE SCI-2000 Orlando, Florida, USA. July 23-26, 2000.

[BFT98] M. Blaum et al.: ”Array Codes” in: V.S. Pless and W.C. Huffman (ed): Hand-
book of Coding Theory, North-Holland; ISBN: 0444814728.

[BK95] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, D. Zuckerman:
”An XOR-Based Erasure Resilient Coding Scheme” ICSI TR-95-048, Au-
gust 1995. (Available at www.icsi.berkeley.edu/˜luby)

[BL98] John Byers, Michael Luby, Michael Mitzenmacher, Ashu Rege: ”A Digi-
tal Fountain Approach to Reliable Distribution of Bulk Data”, ACM SIG-
COMM 1998.

[DL01] A. W. Dine and W. Litwin: ”Implementation and Performance Measurements
of the RP* Scalable Distributed Data Structure for Windows Multicomput-
ers.” Intl. Workshop on Performance-Oriented Program Development for
Distributed Architectures (PADDA), Munich, 2001.

[MM69] Marvin Marcus and Henryk Minc: A Survey of Matrix Theory and Matrix In-
equalities. Prindle, Weber, & Schmidt, Boston 1969, Dover, Mineola, 1992.

[MS97] F. J. MacWilliams and N. J. A. Sloane: The Theory of Error Correcting
Codes, North Holland, Amsterdam 1997.

[LS00] W. Litwin, Th. Schwarz. LH*RS: A High-Availability Scalable Distributed
Data Structure using Reed Solomon Codes. ACM-SIGMOD-2000 Intl.
Conf. On Management of Data. Dallas 2000.

[LNS96] W. Litwin, M.-A. Neimat, D. Schneider: ”LH* - A Scalable Distributed Data
Structure”, ACM Transactions on Database Systems, Dec. 1996 Vol. 21 Issue
4

[XB99] L. Xu and J. Bruck ”X-Code: MDS Array Codes with Optimal Encoding,”
IEEE Trans. on Information Theory , Vol. 45, No. 1, pp. 272–276, January
1999.

[X98] L. Xu, Highly Available Distributed Storage Systems,” Ph.D. the-
sis, California Institute of Technology, 1998. Also available at:
http://paradise.caltech.edu/ lihao/thesis.html.

Thomas J.E. Schwarz, S.J. is with the Department of Computer Engineering Santa Clara
University, Santa Clara, CA 95053. E-mail: tschwarz@calprov.org

