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Abstract

We evaluate theoretically a new validation scheme based on signatures with algebraic properties. In

this proposal, we read records without regard to transactional isolation, but we validate these reads

before we commit any writes. We evaluate the concurrency level of this basic scheme and propose a way

to integrate it with a typical hash based SDDS that avoids phantoms.
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1 Introduction

Transaction processing is a cornerstone of modern information technology. Techniques to allow concurrent

transactions have been studied for at least the last three decades. In this paper, we investigate one recently

proposed concurrency algorithm [11, 12] for distributed databases, especially Scalable Distributed Data

Structures (SDDS), that uses signatures to validate reads. In particular, we investigate the degree of isolation

and also how to achieve “the third degree”, that is, isolated, serializable, and repeatable reads. As it turns

out, the original proposal only implements the ANSI SQL Read Committed level, but an enhancement yields

full isolation levels with excellent concurrency.

A transaction in our scheme reads records without regards for isolation control. It can determine its read

set dynamically, that is, it does not have to predeclare reads. Before the transaction commits its writes and

before it commits to the user, it verifies all its reads with a multicast. If all its reads have been successfully

verified, the transaction performs all its writes with another multicast and returns to the client application.
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When a transaction verifies a record, it just sends the signature – a small bit string calculated from the

record contents – to the site. This technique allows very simple and fast verification. Our protocol works

especially well for tables organized as LH* files. LH* is the distributed version of Linear Hashing (LH) [9].

We verify not individual records, but small regions, consisting of at most a few records. By verifying regions,

we prevent phantoms.

Our fundamental result is that we can achieve full isolation (i.e. serializability) if we prevent conflicts

with competing transactions during the verify-write phase of a transaction. We can think of the actual reads

as “pre-reads” and of the read verifies as the “true reads” for the purposes of concurrency control. The actual

critical section of a transaction, during which it can conflict with other transactions is then extremely short,

consisting only of a few multicasting rounds, but without read data transfers and calculations. We consider

this an important property. We can use locking for the critical verify-write phase to gain the properties of

a conservative, strict two-phase locking protocol.

2 Signature Scheme: Definition and Properties

2.1 Galois Field Fundamentals

Our algebraic signatures use Galois field calculations. The elements of the Galois field we are using are

symbols, that is, bit strings of length f. Typically, f = 8, and a symbol is simply a byte. Sometimes it is

advantageous to use f = 16 (half words) or even f = 32 (words). We can add, multiply, and divide symbols

just as we manipulate real numbers or rational numbers (fractions). Mathematically, our field consists of all

polynomials of degree up to f − 1 in an undeterminate x over the field of binary numbers {0, 1} modulo a

certain generator polynomial g(x), which is irreducible and of degree f. The bit string encodes the coefficients

of the polynomial. For example the polynomial x7 +x3 +x+1 corresponds to the string 1000 1011. Addition

is the addition of two such polynomials. At the bit string level, we merely add the coefficients, that is, we take

the XOR of the bit string. To multiply two symbols, we mathematically multiply the two corresponding

polynomials and then calculate the remainder of the division by g of the product. This method is too

cumbersome to be used in practice. A much more preferable method uses logarithms and antilogarithm. A

Galois field abounds with primitive elements α so that every non-zero field element β can be written as a

power αi. The power i is uniquely determined within {1, . . . 2f − 1} and is called the logarithm i = logα(β)

of β. Reversly, we call β the antilogarithm β = antilogα(i) of i. The product of two non-zero elements β and
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γ is then β · γ = antilogα(logα(β) + logα(γ)), where the addition is taken modulo 2f − 1. We implement

multiplication then by using a logarithm and an antilogarithm table. By using longer logarithm tables, we

can replace the lengthy modulo 2f − 1 addition with normal integer addition and even replace the tests

whether the factors are zero.

2.2 Record Signatures

The records in our database consists of a key c and a the non-key data field R. In practice, R is often

divided into many different fields, it might contain various types of data such as images, and it might be of

non-uniform length. By padding if necessary, we assume that R is a string of symbols rν that are elements

in our Galois field. We calculate a signature (a.k.a. checksum or hash) from the contents of R in the way

we now describe.

Definition 1 Let β be a non-zero element of the Galois field, and let R = (rν){ν=1,...,N} be a record field.

Define the β-signature of R to be

sigβ(R) =
N∑

ν=1

αν−1rν .

If α is a primitive element and if m is an integer m ≥ 1, define the m-fold α-signature of R to be

sigα,m(R) = (sigα0(R), sigα(R), sigα2(R), . . . , sigαm−1(R)) .

It follows from the definition that sigα0(R) is the XOR of all the symbols making up R. The m-fold α-

signature of R is a bit string of length mf. The definition of the β-signature is closely related, but not

identical to the signature used in [8, 5] and falls into a general class called a Karp-Rabin polynomial. We

call our signatures algebraic because they have algebraic properties that we are going to exploit. We are

interested in validating records and record fields. In particularly, we are interested that the signature detects

a change, that is, that the signature changes when we change the record. The first proposition below shows

that this is true for small changes while the second one applies to major changes. The third proposition

shows that we can calculate the change in signature from the change in the record. The first and the third

proposition do not apply to cryptographically secure signature like the Secure Hash Algorithm (SHA1 et al.)

or MD5.

Proposition 1 If the record field length n of R is smaller than 2f − 1 then the m-fold α-signature discovers

any changes in R of up to m symbols.
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Proposition 2 The probability that the m-fold α-signature of two random records fields coincides is 2−mf .

Proposition 3 Let us change record field R to R′ by replacing the symbols starting in position s + 1 and

ending in position t with a string qs+1, qs+2, . . . , qt. Define the ∆-string to be the string δ1, δ2, . . . , δt−s with

δi = pi+s

⊕
qi+s. Then

sigβ(R′) = sigβ(R) + βssigβ(∆)

Proposition 4 If we add zero characters to the end of R, then the signature of R does not change.

The proof of the last proposition is trivial, the other proofs as well as additional properties can be found

in [12].

2.3 Record and Region Signatures

A record consists of a key c and a non-key field R. By conceptually padding with zeroes, we do not change

signatures (Prop. 3) and so we can assume that the non-key fields in the data base have all the same length.

We assume a mapping φ that maps each key c into a non-zero Galois field element φ(c). A region R is a set

of records {(cj , Rj)|j ∈ J}. We define the region signature with respect to a Galois field element β to be

sigβ(R) =
∑

j∈J

φ(cj)sigβ(Rj).

Essentially, the region is a sum of the signatures of the fields in the regions, but modified such that the keys

contribute to the signature calculation. If we switch the keys of two fields, then the region signature changes

as long as the φ values of the keys differ. Since regions are typically composed of records with keys that have

the same binary postfix and since we typically set φ(c) to be the first f digits, the latter will almost always

be the case. We define the m-fold signature of a region R to be

sigα,m(R) := (sig1(R), sigα(R), . . . sigαm−1(R)) .

The m-fold region signature inherits properties from the record signature, but also satisfies an analogue of

Proposition 3 when adding, deleting, or modifying a member record.

Proposition 5 Let β = αi for some Galois field element α and some power i. Let R = (c, F ) be a record

and let R be a region. Then

1. If R /∈ R then sigβ(R∪ {R}) = sigβ(R) + φ(c)sigβ(R).
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2. If R ∈ R then sigβ(R \ {R}) = sigβ(R) + φ(c)sigβ(R).

3. If R ∈ R and we change (c, R) to (c, R′) and by that change R to R′ then sigβ(R′) =

sigβ(R) + φ(c) · (sigβ(R) + sigβ(R′)).

The proof of the proposition follows immediately from the definitions. Readers not familiar with calcu-

lations in a Galois field GF(2f ) need to be warned that in these fields, addition is the same as subtraction.

In the context of scalable, distributed data structures, we encounter regions in two varieties. If the SDDS

is range partitioned, then regions will be formed by records with keys in an interval [c0, c1], if SDDS is a

LH* variant, then a region would be a bucket or a sub-bucket. We consider this case in the next section.

2.4 LH* Regions

We assume some familiarity with Linear Hashing and its distributed version, LH*. An LH* bucket with

bucket number n consists of all records in the LH* file with a key c such that the last l bits of the key make

up the binary number n. Parameter l is the level, which scales up and down with the file. Consequentially,

we define a region R(n, k) to consists of all records such the last k digits of the binary representation of their

key c equals n. A region can thus consists of several buckets, a single bucket, or parts of a bucket. If the

LH* buckets are organized as Linear Hashing files, then a region might consists in the latter case of several

LH buckets, an LH bucket, or parts of an LH bucket. We choose regions with k small enough so that on

average a region is made of zero, one, or a few records. Our scheme treats regions as atomic isolation units.

If we do locking, then we lock and unlock regions instead of individual records. This avoids problems with

phantoms. Phantoms are records that appear or disappear from the sets read or written by a transaction

because some other transaction puts them in (because we do not have predicate locking). It is easy to lock

regions, independently whether a region actually contains records or not. The alternative to region locking

is to describe the records that are being locked, i.e. to use predicate locking. We could also lock the next

record after record to be inserted or deleted, as in Aries. Predicate locking is cumbersome and often too

pessimistic. The drawback of region locking is that a record about to be created needs to have a key, by

which it can be referred to. This might limit our solution to SDDS.

As the SDDS file grows and shrinks, we need to adjust the size of a region by splitting or merging regions.

These operations are exactly like the corresponding operations for buckets, with the important exception

that we do not actually move records (in LH*) or even pointers to records (in most LH implementations)
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around. Instead, we need to merge or divide region signatures. Merging signatures is simple, as the following

proposition shows. To calculate the signature of a split region, we need to recalculate the signature of one

of the new regions, but only one, as the following proposition shows.

Proposition 6 Let R1 and R2 be two regions such that R1 ∩ R2 = ∅. Then sigβ(R1 ∪ R2) = sigβ(R1) +

sigβ(R2).

3 Algebraic Signature Based Concurrency Scheme

We develop transaction support for a distributed database representing a single SDDS file. The records in

the SDDS are stored in buckets, and the records are grouped into regions within the bucket. We maintain

the algebraic signature of the regions with the bucket. Each server site in the distributed database contains

one or more buckets. The client site manages transactions from the users and submits operations to the

appropriate server sites.

Transactions are executed in two phases, the Read and Calculate phase and the Verify and Write phase.

In the first phase, a transaction reads records, makes calculations, possibly followed by more reads and

more calculations. Whenever a transaction reads a record (or even checks for the existence of a record), it

also receives the algebraic signature of the region in which the record was. In the second, typically much

faster phase, the transaction checks that the region signatures of its reads have not changed. If that is the

case, then the transaction does all its writes. If however a region signature has changed, then we restart

the transaction, because the read was probably of a record that another transaction has changed. When a

transaction restarts, it does not do so from scratch, because it does not need to redo a read that the scheme

has just confirmed to be still valid.

4 Serialization Properties

We adapt the following notation for execution histories. We use x, y, z, . . . for records, we number transactions

with arabic numerals 1, 2, . . . and we write R for a read operation, W for a write operation, and V for the

verification of signature operation. Thus, V1(x) means that transaction 1 verified its previous read of record

x.
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4.1 Basic Scheme

According to our rules in the basic scheme, transaction i aborts (written as Ai) if even one verify fails, and

commits (written as Ci) after all writes are done. In more detail, we have the following rules for execution

histories.

1. All read operations in a transaction precede all verify operations, which proceed all write operations.

2. A verify operation Vi(x) is successful if there was no write operation Wj(x) between Ri(x) and Vi(x).

3. If all verify operations are successful, then the transaction does all its writes, if any, and terminates

successfully by committing. Otherwise, the transaction aborts without writing.

We compare our basic scheme to the three ANSI SQL isolation levels in the strict interpretation of [3].

Since transactions that write have already successfully verified all their reads and hence will commit, and

since transactions that abort (= restart) never write, the scheme prevents phenomena P0 (dirty writes) and

P1 (dirty reads). However, since reads are not protected, our scheme allows a partial history such as

R1(x) W2(x) C2 R1(x) . . . V1(x) C1.

Thus, our scheme allows thus non-repeatable (fuzzy) reads and this constitutes phenomenon P2. Our scheme

implements the ANSI Read Committed Level of Isolation. Since we do not protect reads, we can also have

phantoms.

Assume now that we modify our scheme such that we have the following additional property:

4. Every actual partial execution history is conflict-equivalent to one where all verifies and writes of a

transaction i happen in a single, atomic block.

Theorem 1 A schedule subject to rules 1–4 is serializable.

Proof: We recall that two schedules are conflict equivalent ([14], Def. 3.12,[6]) if they contain the same

operations and have the same conflict relations. This happens exactly if we can transform one of the schedules

into the other ones by commuting (switching) two transactions in the schedule subject to some rather obvious

rules. For example, we can switch two read transactions or two transactions that affect different objects.

See Weikum and Vossen [14], 3.8.3 for an exact formulation. Let S be a schedule subject to rules 1-4. A

schedule is an abstraction that orders all operations. In an actual history of a distributed database, there

are operations that cannot be ordered, because they happen on different servers that do not immediately

communicate with each other, but in these cases the ordering does not matter for the final state of the
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database. Without loss of generality, all verify and write operations of a transaction are done in a single

block, with all verifies preceeding all writes. If i and j are transactions, then we write i <S j if the verify-

write block of transaction i comes before the verify-write block of transaction j. Since all transactions in a

schedule either read, and hence verify, or write, <S is a complete ordering of tr(S), the set of all transactions

in S. Assume now two transactions i, j ∈ tr(S) with i <S j and two operations in conflict with the first one

being an operation of j. The ordering i <S j excludes the case (. . . Wj(x), Wi(x) . . .). If (. . . Rj(x), Wi(x) . . .),

then Vj(x) comes after Wi(x) and hence fails. Therefore, transaction j aborts without writing any data,

thus removing all potential conflicts. Finally, a schedule (. . . Wj(x), Ri(x) . . .) is excluded by rule 1, since

Vi(x) would follow after Wj(x) which contradicts i <S j.

A more intuitive argument is that we consider all our reads to be merely pre-reads of an advisory character

and that the verifies count as the true reads for concurrency.

4.2 A Locking Scheme

To fully support transaction serializability, we need to make the verify–write phase atomic. We propose a

locking scheme where a transaction acquires all locks quasi-simultaneously and releases them simultaneously.

This is a variation of well known locking schemes, but one in which all locks are short-lived. In more detail, a

transaction accesses data records during its read–calculate phase without regard to locks. In this, our scheme

is very optimistic. When a transaction reads from a region, it also requests the region signature. After the

transaction has finished all its reads, it sends a multicast message to all members of its read and write set,

requesting read and write locks respectively. It sends the region signature(s) to the members of the read set.

Similarly, it sends the update to a server at which it wants to update a record. A server receiving a read lock

request grants it if the region signature sent by the transaction is the same as that calculated locally and if

there is no write lock on the region. A server receiving a write lock request grants it if there are no other

locks on the region. A server for a region in both the read and the write set grants the request and sets the

write lock if the signatures match and there are no other locks on the region. All servers accessed send their

decision to the transaction. If the transaction receives one negative answer, it aborts, that is, it restarts. It

also sends an “abort and release locks” message to all other service sites that it accessed. Otherwise, the

transaction sends a multicast commit message to all sites. This causes a lock at a read region to be released.

The receipt of the commit message at a write site causes the new value to be written and the lock released.

Our locking variant combines conservative and strict two-phase locking, because it sets all locks “simulta-
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neously” at the beginning of the critical phase and releases them “simultaneously” at the end of the critical

phase. The first property implies that the locks are short-lived; the second one gives us strict execution,

which makes recovery easy. Because locks are short-lived, the degree of concurrency should be high. On the

negative side, a transaction with a very large read set might suffer from live-lock (many repeated aborts) in

an environment with many writes.

Because reads in our scheme are advisory, a transaction that aborts because a verify operation fails does

not need to restart from scratch. Since the data obtained from reads have just been verified, the transaction

only needs to read data items that have been invalidated. Some transactions might actually be able to

recover parts of the calculation, but this capability has to be engineered at the database query processing

level.

4.3 Combining the Locking Scheme with SDDS

In order to avoid phantoms, we do not want to lock individual records but regions of records. We therefore

conceptually divide the SDDS files into small regions that we lock. For each region we maintain a signature.

When we read a data item, we acquire the signature of the region in which the record resides. When we

verify the value of the record, we merely submit the signature to the bucket server of the bucket that contains

the region and ask whether the signature has changed. If the region were to contain many records, then we

could not tell whether the signature changed because the read record changed or because of an unrelated

change. For this reason, regions should on average contain a single item. We can achieve this by dynamically

merging and splitting regions as the file size shrinks and grows. When we split or merge a region, we should

keep the signature of the old region(s) around for the little time it takes for transactions that have obtained

this signature to clear.

We can even store the region signatures in a Merkle tree, whose leaves consists of region signatures and

whose inner nodes consist of sums of the signatures of the regions. In a database with very few writes, we

can then verify multiple reads at the same server with a single signature. The details of this scheme are

subject to continuing research.

4.4 A Non-Locking Scheme

Modern distributed systems have loosely synchronized clocks, that is, clocks that are synchronized with

a given maximum difference at the order of a few milliseconds at most. We then can use an optimistic
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concurrency scheme based on a timestamp acquired at a local server such as the one in [1]. When a

transaction T enters the verify phase, it determines the server with the lowest bucket number and gets

a time stamp from this server. The transaction coordinator (TC) then sends verify/write/vote requests

simultaneously to all servers. The verify/write/vote request contains the following information: T.ts, the

timestamp of T; T.ReadSet, the regions at that bucket that were read by T; T.WriteSet, the regions of that

bucket that are to be written by T; and the identifier of the client. The server maintains a validation queue

(VQ) of recently validated transactions and the VQ is used to ensure that T is serialized by timestamp with

all conflicting transactions in the VQ. If T is not in serial order, the server aborts T by returning a ”no” vote

to the TC. If T is in proper order, the server puts the transaction information in the VQ and votes ”yes”. If

the TC receives all ”yes” votes, it tells all servers to commit, at which time the writes are made permanent.

5 Conclusion and Future Work

Using signatures alone to verify reads allows unserializable histories. However, by adding standard database

concurrency mechanisms, region signatures can enforce transactional isolation. The use of signatures allows

us to shorten considerably the time in which a transaction might contend with another transaction and thus

should considerably improve throughput. Using regions deals with phantom records effectively. We assume

that a comparison with predicate locks will be favorable to our scheme.

In the future, we will investigate under what circumstances (if any) our schemes perform better than

normal schemes. We expect to have a significant advantage for situations with few writes and long calculation

phases. We also need to design rules for dealing with failure, because currently, a transaction that encounters

an unavailable site needs to wait for the data items to be reconstructed. This might not be good policy,

since it increases lock duration when the system as a whole experiences considerable network load.
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