
- 1 -

Overview of Scalable Distributed Database System SD-SQL
Server

Witold Litwin1, Soror Sahri2, Thomas Schwarz3

CERIA, Paris-Dauphine University
75016 Paris, France

Abstract. We present a scalable distributed database system SD-SQL Server. Its original
feature is the scalable distributed partitioning of its relational tables. The system
dynamically distributes the tables into segments created each at a different SD-SQL Server
node. The partitioning is transparent to the applications. New segments result from splits
following overflowing inserts. SD SQL Server avoids the periodic and cumbersome manual
reorganizing of scaling tables, characteristic of the current DBMS technology. With the
comfort of a single node SQL Server database user, the SD-SQL Server user may dispose
of many times larger tables. We present the architecture of our system, and its
user/application interface. Related work discusses our implementation and shows that the
overhead of our scalable distributed table management should be typically negligible.

1. Introduction
The increasing volume of data to store in databases makes them more and more often huge and

permanently growing. Typically, large tables are hash or range partitioned into segments stored over
different storage sites. Current DBMSs, e.g. SQL Server, Oracle or DB2 to name only a few, provide
static partitioning only [1][5][10]. To scale tables over new nodes, the DBA has to manually redefine the
partition and run a data redistribution utility. The relief from this trouble became an important user
concerns, [1].

This situation is similar to that of file users forty years ago in the centralized environment. The Indexed
Sequential Access Method (ISAM) was in use for the ordered (range partitioned) files. Likewise, the
static hash access methods were the only known for the files. Both approaches required the file
reorganization whenever the inserts overflowed the file capacity. The B-trees and the extensible (linear,
dynamic) hash methods were invented to avoid the need. They replaced the file reorganization with the
dynamic incremental splits of one bucket (page, leaf, segment…) at the time. The approach was
successful enough to make the ISAM and centralized static hash files in the history.

Efficient management of distributed data present specific needs. The Scalable Distributed Data Structures
(SDDSs) addressed these needs for files, [5][6]. An SDDS scales transparently for an application through
distributed splits of its buckets, hash, range or k-d based. In [7], the concept of a Scalable Distributed
DBS (SD-DBS) was derived for databases. The SD-DBS architecture supports the scalable (distributed
relational) tables. As an SDDS, a scalable table accommodates its growth through the splits of its
overflowing segments, stored each at some SD-DBS server (node DB). Also like in an SDDS, the splits
can be in principle hash, range or k-d based with respect to the partitioning key(s). The storage nodes can
be P2P or grid DBMS nodes. The user or the application, manipulates a scalable table from a client (node

1 Witold.Litwin@Dauphine.fr
2 Soror.Sahri@Dauphine.fr
3 tjschwarz@scu.edu

mailto:Witold.Litwin@Dauphine.fr
mailto:Soror.Sahri@Dauphine.fr
mailto:tjschwarz@scu.edu

- 2 -

DB) that is not a server, or from a peer that is both, again as in an SDDS. The client accesses a scalable
table only through its specific view, termed (client) image. It is a particular updateable distributed
partitioned union view stored at a client. The application manipulates a scalable table using its image or
more generally a scalable view. A scalable view involves a scalable table, always and only through the
reference to its image.

Every image, one per client, hides the scalable table partitioning and dynamically adjusts to its evolution.
The images of the same scalable table may differ among the clients and from the actual partitioning. The
image adjustment is lazy. It occurs only when a query referring to comes in, and finds the image outdated.
Scalable tables make the global database reorganization largely useless. Similarly to B-trees or extensible
hash files with respect to the earlier file schemes.

To prove the feasibility of an SD-DBS, we have built the prototype termed SD-SQL Server. The system
generalizes the basic SQL Server capabilities to the scalable tables. It runs on a collection of SQL Server
linked nodes. For every standard SQL command under SQL Server, there is an SD-SQL Server command
for a similar action on scalable tables or views. There are also commands specific to SD-SQL Server
client image or node management.

Below we present the architecture of our prototype and its application command interface in its 2005
version. The current architecture addresses more features than [7]. With respect to the interface, we
discuss the syntax and semantics of each command. Numerous examples illustrate the actual use of the
commands. We hope to convince that the use of the scalable tables should be about as simple as of the
static ones in practice. This, despite some limitation of our current interface, with respect to a full-scale
one. We have intended it as the “proof of the concept” only, as the whole prototype besides.

The related papers discussed the internal design and the processing performance of SD-SQL Server, [8],
[13]. The scalable table processing creates an overhead and our design challenge was to minimize it. The
performance analysis proved this overhead negligible for practical purpose. The present capabilities of
SQL Server let a scalable table to reach 250 segments at least. This should suffice for scalable tables
reaching very many terabytes. SD-SQL Server is the first system with the discussed capabilities, to the
best of our knowledge. Our results pave the way towards the use of the scalable tables as the basic DBMS
technology.

Below, Section 2 presents the SD-SQL Server architecture. Section 3 discusses the user interface. Section
4 discusses the related work. Section 5 concludes and discusses the future work.

2. SD-SQL Server Architecture
Fig 1 shows the current SD-SQL Server architecture, adapted from the reference architecture for an SD-
DBS in [7]. The system is a collection of SD-SQL Server nodes. An SD-SQL Server node is a linked SQL
Server node declared, in addition, an SD-SQL server node. Actually, we generate the links with the lazy
schema validation option, accelerating the query processing. The declaration of a linked node as an SD-
SQL Server node results from an SD-SQL Server command or a dedicated SQL Server script for the 1st
node of the collection. We qualify the latter of primary node. The primary node registers all other current
SD-SQL nodes. One can add or remove those dynamically, using specific SD-SQL Server commands.
The primary node registers the nodes on itself, in a specific SD-SQL Server database termed meta-
database (MDB). An SD-SQL Server database is an SQL Server database that contains an instance of
SD-SQL Server specific manager component. A node may carry several SD-SQL Server databases.

We call an SD-SQL Server database in short node database (NDB). NDBs at different nodes may share a
(proper) database name. Such nodes form an SD-SQL Server scalable (distributed) database (SDB). The
common name is the SDB name. One of NDBs in an SDB is primary. It carries the meta-data registering
the current NDBs, their nodes at least. SD-SQL Server provides the commands for scaling up or down an
SDB, by adding or dropping NDBs. For an SDB, a node without its NDB is (an SD-SQL Server) spare
(node). A spare for an SDB may already carry an NDB of another SDB. Fig 1 shows an SDB, but does
not show spares.

Each manager takes care of the SD-SQL Server specific operations, the user/application command
interface especially. The procedures constituting the manager of an NDB are themselves kept in the NDB.

- 3 -

They apply internally various SQL Server commands. The SQL Servers at each node entirely handle the
inter-node communication and the distributed execution of SQL queries. In this sense, each SD-SQL
Server runs at the top of its linked SQL Server, without any specific internal changes of the latter.

An SD-SQL Server NDB is a client, a server, or a peer. The client manages the SD-SQL Server node
user/application interface only. This consists of the SD-SQL Server specific commands and from the SQL
Server commands. As for the SQL Server, the SD-SQL specific commands address the schema
management or let to issue the queries to scalable tables. Such a scalable query may invoke a scalable
table through its image name, or indirectly through a scalable view of its image, involving also, perhaps,
some static tables, i.e., SQL Server only. An SD-SQL Server command is typically an SQL Server stored
procedure involving clauses of an SQL command as the actual parameter and perhaps other parameters.
These are specific to a scalable table management, e.g., the segment size that is the maximal number of
tuples the segment should contain, beyond which the split should occur. An SD-SQL Server commands
for queries are typically named upon their SQL “originals”, e.g., SD_SELECT upon SELECT.

Internally, each client stores the images, the local views and perhaps static tables. These are tables created
using the SQL Server CREATE TABLE command (only). It also contains some SD-SQL Server meta-
tables constituting the catalog C at the figure. The catalog registers the client images, i.e., the images
created at the client. Finally, the application may store at the client other SQL Server objects that it might
need such as its own stored procedures.

When a scalable query comes in, the client checks whether it actually involves a scalable table. If so, it
must address its image, directly or through a scalable view. The client searches therefore for the images
that the query invokes. For every image, it checks whether it conforms to the actual partitioning of its
table, i.e., unions all the existing segments. We recall that a client view may be outdated. The client uses
C, as well as some server meta-tables pointed to by C, defining the actual partitioning. The manager
dynamically adjusts any outdated image. In particular, it changes internally the scheme of the underlying
SQL Server partitioned and distributed view, representing the image to the SQL Server. The manager
executes the query, when all the images it uses prove up to date.

A server NDB stores the segments of scalable tables. Every segment at a server belongs to a different
table. At each server, a segment is internally an SQL Server table with specific properties. First, SD-SQL
Server refers to in the specific catalog in each server NDB, named S in the figure. The meta-data in S
identify the scalable table each segment belongs to. They indicate also the segment size. Next, they
indicate the servers in the SDB that remain available for the segments created by the splits at the server
NDB. Finally, for a primary segment that is the 1st one created for a scalable table, the meta-data at its
server provide the actual partitioning of the table.

Next, each segment has an AFTER trigger attached, not shown at the figure. It verifies after each insert
whether the segment overflows. If so, the server splits the segment, by range partitioning it with respect to
the table (partition) key. It moves out enough upper tuples so make the remaining (lower) tuples fitting
the splitting segment size. For the migrating tuples, the server creates remotely one or more new segments
that are each half-full (notice the difference to a B-tree split creating a single new segment). The new
segments are each at a different server. The splitting server chooses those randomly among available
server nodes, using its S catalog. The new segments become a part of the scalable table. Internally, the
segment creation operations are the SQL commands, taken care of by the SQL Servers at the server nodes
handling the split. These commands are organized so that the concurrent processing of a split and of a
scalable query to the scalable table being split always remains correct (serializable).

Furthermore, every segment in a multi-segment scalable table carries an SQL Server check constraint.
Each constraint defines the partition (primary) key range of the segment. The ranges partition the key
space of the table. These conditions let the SQL Server distributed partitioned view to be updateable, by
the inserts and deletions in particular. This is a necessary and sufficient condition for a scalable table
under SD-SQL Server to be updateable as well.

Finally a peer NDB is both a client and a server NDB. Its node DB carries all the SD-SQL Server meta-
tables. It may carry both the client images and the segments. The meta-tables at a peer node form
logically the catalog termed P at the figure. This one is operationally, the union of C and S catalogs.

- 4 -

A client (or a peer) creates a scalable table upon the application command. The client creating table T,
starts with the remote creation of the primary segment of T. The primary segment is the only to receive
the tuples of T, until it overflows. The client is aware of the servers it may use through meta-tables in C.
The client basically has only one (primary) server, otherwise it chooses randomly in its list. A peer
usually creates the primary segment in its NDB. Next, the client (or the peer) creates the primary client
image of T, named T itself, in its NDB. The creation involves the input into SQL Server meta-tables and
into C (or P) catalogs. The client itself becomes the primary client of table T.

A secondary client node i.e., other than the primary one, can create its own secondary image. An
application invokes only T image, we recall. The segments themselves are invisible to the applications.
The splits do not adjust the images. A contrary approach would be often inefficient at best, or simply
impossible in practice. As the result every split of a scalable table makes all its images outdated. This is
why the client dynamically checks every query for the possibly outdated images, as we described.

A scalable table can finally have scalable indexes. These may accelerate searches in scalable tables like
SQL Server indexes do for the static tables. The splits propagate the scalable indexes to new segments.
Under SD-SQL Server a scalable index consists itself from the index segments, symbolized as I at the
figure. There is one index segment per index and segment of the table. Each index segment is an SQL
Server index on the table that a segment constitutes for the local SQL Server.

The interface that an SD-SQL Server client provides to the application for the scalable tables and their
views, offers basically the usual SQL manipulation capabilities, up to now available for the static tables
only. The client parses every SD-SQL Server (specific) command and defines an execution plan. The plan
consists of SQL Server commands and of additional procedural logic. The client passes every SQL Server
command produced to its SQL Server for the execution. The SQL Server parses the command in turn,
produces sub-queries and forwards them for the distributed execution to the selected linked servers. If the
application requests a search, then the remote servers send the retrieved tuples to the local SQL Server
internally as well, i.e., among the SQL Server managers at the nodes. That one returns the overall result to
the application, including perhaps also tuples found in its local segments.

To let the client to offer these operations, an SD-SQL Server server handles locally for its segments the
basic SQL manipulations, embedded typically into more complex stored procedures. The basic
manipulations are the tuple updates, inserts, deletes, and searches as well as the segment indexing, and
alteration. The procedures involve multiple SQL commands on the segments and meta-tables, within
some procedural logic. They correspond to the segment creation, splitting and dropping. As we just
mentioned, the split operation in particular, makes the server to remotely create the segment(s) on other
sites.

Finally, SD-SQL Server allows for the node management commands. These let to create/drop SD-SQL
Server nodes, SDBs and NDBs. A node creation command installs one or more SD-SQL Server nodes. A
node can be of type peer, client or server. The peer node (default) accepts any type of NDB: client, server
or peer. The client node only accepts a client NDB, while the server node only accept server NDBs. The
creation of an SDB creates its primary NDB and registers SDB at the primary node. The creation of an
NDB requires the existence of its SDB from which the NDB inherits the name. Internally, it registers the
NDB at the primary one of the SDB. Any drop operation undoes all the above. It preserves however the
every secondary segment by migrating them elsewhere. This may require a dynamic creation of an NDB
elsewhere. A server NDB manager can also dynamically create an NDB during a split in progress. It may
do it when the scalable table it manipulates already has a segment at every NDB within the SDB, hence it
cannot find the normal location for the new one(s).

To illustrate the architecture, Fig 1 shows the NDBs of some SDB, on nodes D1…Di+1. The NDB at D1
is a client NDB that thus carries only the images and views, especially the scalable ones. This node could
be the primary one, being only of type peer or client. It interfaces the applications. The NDBs on all the
other nodes till Di are servers . They carry only the segments and do not interface any applications. The
nodes could be peer or server, only. Finally, the NDB at Di+1 is a peer, providing all the capabilities. Its
node has to be a peer node. The NDBs carry a scalable table termed T. The table has a scalable index I.
We suppose that D1 carries the primary image of T, locally named T. The image unions the segments of
T at servers D2…Di with the primary segment at D2. Peer Di+1 carries a secondary image of T. That one

is supposed different, including the primary segment only. Both images are outdated. Server Di just split
indeed its segment and created a new segment of T on Di+1. It updated the meta-data on the actual
partitioning of T at D2. None of the two images refers to this segment as yet. Each will be actualized only
once it gets a scalable query to T. The split has also created the new segment of I.

Notice finally in the figure that segments of T are all named _D1_T. This represents the couple (creator
node, table name). We discuss details of SD-SQL Server naming rules later on. Notice here only that the
name provides the uniqueness with respect to different client (peer) NDBs in an SDB. These can have
each a different scalable table named T for the local applications. Their segments named as discussed may
share a server (peer) node without the name conflict.

Split

User/Application User/Application

Linked
SQL

Servers

D1Node DBs D2 Di

SD-SQL
peer

Di+1

_D1_T

SD-SQL
server

SD-SQL
server

SD-SQL
client

S S P C
 I I

T(2..i)

T(1,2)

SD-SQL
Server

Managers

_D1_T
 I

_D1_T

Fig 1 SD-SQL Server Architecture

3. Application Interface
To be developed in the full paper. See in the meantime [14].

4. Command Processing
To be developed in the full paper. See in the meantime [14].

5. Performance Analysis
To be developed in the full paper. See in the meantime [14].

6. Related Works
Efficient parallel and distributed database partitioning has been studied for many years, [12]. It naturally
triggered the work on the reorganizing of the partitioning, with notable results as early as in 1996, [11].
The common goal was a global reorganization, unlike for our system.

The editors of [11] contributed themselves with two on-line reorganization methods, termed respective
new-space and in-place reorganization. The former method created a new disk structure, and switches the
processing to it. The latter approach balanced the data among existing disk pages as long as there was
room for the data. Among the other contributors to [11], concerned a command named ‘Move Partition
Boundary’ for Tandem Non Stop SQL/MP. The command aimed on on-line changes to the adjacent
database partitions. The new boundary should decrease the load of any nearly full partition, by assigning
some tuples into a less loaded one. The command was intended as a manual operation. We could not find
whether it was ever realized.

- 5 -

- 6 -

A more recent proposal of efficient global reorganizing strategy is in [10]. One proposes there an
automatic advisor, balancing the overall database load through the periodic reorganizing. The advisor is
intended as DB2 offline utility. Another attempt, in [4], the most recent one to our knowledge, describes
yet another sophisticated reorganizing technique, based on the database clustering. Termed AutoClust, the
technique mines for the closed sets, then groups the records according to the resulting attribute clusters.
The AutoClust processing should to start when the average query response time drops below a user
defined threshold. It is unknown whether AutoClust was put into practice.

With respect to the partitioning algorithms used in other major DBMSs, the parallel DB2 uses the (static)
hash partitioning. Oracle offers both, hash and range partitioning, but over the shared disk multiprocessor
architecture only. In SQL Server 2000 that we use, the partitioning is manual. SQL Server 2005 has a new
capability that is the dynamic creation of a new segment, subject to the application command. For
instance, the user may require that the table get a new segment every 1st of the month [15]. This is not the
scalable table in our sense. It does not have the capability of splitting the overflowing segments. Splitting
remains manual under SQL Server 2005. Generally, how one may create the scalable tables at the
discussed systems remains an open research problem.

7. Conclusion
We have put into practice the SD-SQL Server, the “proof of concept” prototype of a new type of a

DBMS, managing the scalable distributed tables. Through the scalable distributed partitioning, with
respect to the current capabilities of an SQL Server database, as well as of the other known DBMSs, our
system provides a much larger table, or a faster response time of a complex query, or both.

The SD-SQL Server commands let the user/application to easily take advantage of the new capabilities of
our system. Our work in progress concerns remaining implementation and tuning issues. We also work on
deeper performance analysis, using more machines and larger tables. We will measure more SkyServer
benchmark queries, as well as plan to apply some well-known general benchmarks. Finally, since our
prototype uses the current public SQL Server version that is the SQL Server 2000, we also plan to migrate
to SQL Server 2005 when Microsoft fully releases it. This will somehow change our system design,
especially the scalable index management.

8. Acknowledgments
We thank J. Gray (Microsoft BARC) for the SkyServer database and helpful comments. We are grateful
to G. Graefe (Microsoft) for information on SQL Server linked servers’ capabilities. We also thank N.
Ben-El-Kadi for information on various SQL Server capabilities. The initial support for this work came
partly from research grant of Microsoft Research.

9. References
1. Ben-Gan, I., and Moreau, T. Advanced Transact SQL for SQL Server 2000. Apress Editors, 2000
2. Gray, J. & al. Data Mining of SDDS SkyServer Database. WDAS 2002, Paris, Carleton Scientific (publ.)
3. Gray, J. The Cost of Messages. Proceeding of Principles Of Distributed Systems, Toronto, Canada, 1989
4. Guinepain, S & Gruenwald, L. Research Issues in Automatic Database Clustering. ACM-SIGMOD, March 2005
5. Lejeune, H. Technical Comparison of Oracle vs. SQL Server 2000: Focus on Performance, December 2003
6. Litwin, W., Neimat, M.-A., Schneider, D. LH*: A Scalable Distributed Data Structure. ACM-TODS, Dec. 1996
5. Litwin, W., Neimat, M.-A., Schneider, D. Linear Hashing for Distributed Files. ACM-SIGMOD International

Conference on Management of Data, 1993
7. Litwin, W., Rich, T. and Schwarz, Th. Architecture for a scalable Distributed DBSs application to SQL Server

2000. 2nd Intl. Workshop on Cooperative Internet Computing (CIC 2002), August 2002, Hong Kong
8. Litwin, W & Sahri, S. Implementing SD-SQL Server: a Scalable Distributed Database System. Intl. Workshop on

Distributed Data and Structures, WDAS 2004, Lausanne, Carleton Scientific (publ.), to app
9. Microsoft SQL Server 2000: SQL Server Books Online
10. Rao, J., Zhang, C., Lohman, G. and Megiddo, N. Automating Physical Database Design in a Parallel Database,
 ACM SIGMOD '2002 June 4-6, USA
11. Salzberg, B & Lomet, D. Special Issue on Online Reorganization, Bulletin of the IEEE Computer Society
 Technical Committee on Data Engineering, 1996
12. Özsu, T & Valduriez, P. Principles of Distributed Database Systems, 2nd edition, Prentice Hall, 1999.

- 7 -

13. Soror Sahri, Witold Litwin, SD-SQL Server: a Scalable Distributed Database System, CERIA Research Report
2005-03-05, March 2005

14. Soror Sahri, Witold Litwin, Architecture and Interface of Scalable Distributed Database SD-SQL Server
System, CERIA Research Report, November 2005.

15. Kimberly L. Tripp, Tables et Index Partitionnés dans SQL Server 2005. January, 2005.

	1. Introduction
	2. SD-SQL Server Architecture
	3. Application Interface
	4. Command Processing
	5. Performance Analysis
	6. Related Works
	7. Conclusion
	8. Acknowledgments
	9. References

