

Privacy of Data Outsourced to a Cloud for Selected
Readers through Client-Side Encryption

Sushil Jajodia
George Mason University

Fairfax, VA
Jajodia@GMU.edu

Witold Litwin
Dauphine University

Paris, France,
Witold.Litwin@Dauphine.fr

Thomas Schwarz
Universidad Católica de Uruguay

Montevideo, Uruguay
TSchwarz@UCU.edu.uy

ABSTRACT
We propose a scheme using client-side encryption with
symmetric keys for the privacy of data outsourced to the cloud for
selected readers. The scheme is safe under the most popular
"honest, but curious" model. Readers get the keys from access
grants or have them cached. LH* files store cloud data and
metadata. Diffie-Hellman scheme authenticates clients. Every
client can read any data, but only a grantee decrypts the content.
Access to data is usually the fastest possible that is two messages
and the decryption, regardless of the cloud scale up. Data or grant
creation or update costs are also constant with a few messages and
fast processing. All these features serve our main goal: the search
speed and scalability yet unmatched to our best knowledge. The
scheme is finally intentionally very simple.

Categories and Subject Descriptors

C.2.4 [Cloud Computing]

General Terms
Algorithms, Performance, Security

Keywords
Scalable Distributed Data Structure

1. INTRODUCTION
The ever growing volume of data to store makes clouds attractive
to data owners. Outsourcing to the cloud is often potentially more
useful than caring about the private hardware. Usually, a data
owner disseminates the cloud data to selected readers only. The
update and access granting privileges remain with the owner. A
course secretariat may distribute a class material to the students,
letting each to read it, copy, print out… But, no student can
modify the original and only a class member should get any
documents. A student may depart; the secretariat should revoke
any of her/his access rights. An employee usually produces
documents to be read, perhaps copied or printed, but not
modified, by other selected employees or customers. Only these
persons should have the access, an unauthorized one could end up
at Wikileaks. A “friend” in a social network often wishes to post
information only for the “friends” and only for them. The saga of
the Facebook Quit Day showed how strong this need became.

Etc.

In this context, the cloud privacy (information assurance, safety,
security…), is a paramount requirement, [2], [4]. No cloud
storage intruder (adversary…) or unauthorized client should see
the outsourced data. A natural approach is the client (owner) side
encryption, despite the industrial push towards the server-side
one, [7]. Symmetric encryption, e.g. the AES 256, appears the
choice. The read grant should then somehow pass the encryption
key to the grantee. To keep the key and grant (meta)data private,
an obvious way is to have them at the grantor and grantees nodes
only. The downside is potential for loss. A parade is the backup of
the keys in the cloud. The client or a trusted administrator may
recover them. The backup should be secure under a common
threat model. The algorithms should be scalable and distributed,
staying efficient under the data deluge.

We propose the scheme termed CSCP, for Client Share for Cloud
Privacy, aiming at these goals. The owner encrypts every data
record with unique key, using a symmetric encryption. Clients
cache the keys, but all keys are also in the cloud. Each key in the
cloud is hidden in a public share (PS) produced by the owner.
Each public share belongs to a two-share secret. The secret is the
key. The other share is the client share (CS), every CS being
specific to the owner and each selected reader. Exceptionally,
e.g., when the client privacy goes awry, a “super-client” termed
Admin may rescue.

The CSCP client data and metadata records form three catalogs.
These are physically the LH* files, [12], [11]. Such files have
records structured into (primary key, (data) value) pairs. Records
are stored according to the scalable distributed linear hash over
the primary key. The CSCP performance announced in the
Abstract are due to LH* efficiency, together with the speed of the
encryption scheme, as well as of DH calculation and of one-way
hash as we explain later. The cloud read access is usually the
fastest possible, i.e., time for two messages per record plus the
symmetric decryption. More costly CSCP cloud updates should
be less frequent in practice. The most costly ones, i.e., the grant
revoke and the client delete or takeover should be the least
frequent.

We optimized CSCP for the read access and scalability under
rapid data growth to practically any size, e.g., Exabyte. The result
is yet unmatched to our best knowledge. The scheme has also a
rather negligible storage overhead. It is finally intentionally
simple. Besides the known tools, one needs only three files for
tabular catalogs with a few attributes.

Space limitations force us to present CSCP only in short. Details
and variants trading selected features for other properties, useful
for selected applications are in [8]. Section 2 presents the CSCP
architecture. Section 3 discusses the data manipulation. Section 4
analyzes the safety. Section 5 overviews the scheme’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WPES’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1002-4/11/10...$10.00.

performance. Section 6 deals with the related work. Section 7
briefly concludes and presents the future work.

2. CSCP ARCHITECTURE
2.1 Gross Architecture
A CSCP cloud is public, private or hybrid. A public cloud, e.g.
Amazon or Azure, offers storage and related services, for rent at
one or more data centers. A private cloud is for the internal use,
e.g., Google or Yahoo. A hybrid cloud mixes both.

Every cloud is a collection of server nodes (servers) storing data
manipulated by client nodes (clients). The clients are autonomous
and initiate operations. They expect the cloud servers always
available. In contrast, a client can be sometimes off-line. The
cloud storage can be dominantly disk, flash or RAM. The latter
constitutes a RAM Cloud. These are up to now only in private
clouds, e.g., SDDS_2000 or Gemfire, [3], [6], [11], [13].
Depending on the cloud, the messaging time greatly varies. It is 3-
5s per message at least for a typical public cloud, through a dozen
of milliseconds for a private one, to under 100 microseconds for a
RAM Cloud. A CSCP cloud can be any of these.

Every CSCP cloud has a specific client termed Admin. Admin
provides exclusive trusted capabilities we introduce progressively.
These are of exceptional use, avoiding to Admin being a hot-spot.
They let Admin to manipulate the data of any client. Admin can
be in also the LH* file coordinator. By usual analogy, Admin is a
CSCP “super-client”. Any other client is a normal one.

Every CSCP client X may create a data record. The client uses
symmetric encryption on the new record and inserts the encrypted
record, say D, in the cloud. It selects the server according to LH*
addressing rules. X is then also the sole owner of D. Later, the
ownership can move to another (unique) client and so on. Only
the owner (i) has update, rekeying, and deletion rights on D, (ii)
may disseminate D.

To disseminate D to another client Y, the owner X grants Y the
read access to D. The grant hides the encryption key. Among
normal clients, only X and the grantee Y may unhide it. Every
other normal client can also read D. It will face however only the
encrypted result. The grantee Y can make a fully owned copy of D
and disseminate it, unless the application interface limits copying.
The grantor X can finally revoke any of its grants, e.g. to Y. Y
cannot then decrypt D anymore.

An owner X of data D can issue a grant to a reader representing in
fact a group of users (a g-client). The g-client disseminates
transparently for X a fully owned copy of D to these users, as we
discuss more in [8]. The groups can be static or dynamic.

For all data and metadata, CSCP uses three catalogs, Section 2.5.
These are scalable distributed linear hash (LH*) files with records
structured as usual (key, value) pairs [12]. The value can be a
large field. The key is a primary key, p-key, in the typical sense,
i.e., without semantics for good hash. P-key can be derived from
a single or multiple subfields in the value field, through
cryptographically strong one-way hash, e.g., SHA 256.

2.2 Client Identity
Every CSCP client has a (unique) public customary identity
(CID), e.g., an email address. Every client also carries a (unique)
public trusted (certified) ID, we call TID. The client carries
finally a (unique) secret private ID, (PID). TID and PID obey the
Diffie-Hellman scheme with published numbers, (DH), [10]. If X

is a CID, we usually note PID as x. X’s TID is then equal to gx,
where g is some base. The calculation is done in a finite (strong
prime) field, e.g., with 512b numbers. The field and g are the
common knowledge.

All cloud servers share a PID s and publish the corresponding
TID gs. Basically, Admin sets up any PID and recovers it if need
occurs. A variant in [8] allows however the client to change the
PID, even hiding the new one to Admin. Next, two clients or
client and the cloud communicate all their data within their CSCP
session. Each session has an ID (SID) formed from the client
PIDs and TIDs as the Diffie-Hellman key. If x and y are thus
PIDs, then the SID is gxy. Each partner can efficiently calculate
the SID from its own PID and the TID of the other party, as
(gy)x = (gx)y = gxy. , Every SID is unique to two parties. Also, the
common belief in the security field states that only the two parties
can calculate the SID unless one of the PIDs or entire SID of
course, has leaked out to an intruder. Finally, it is believed that no
one can determine the PID x or y from the SID gxy. If it happened,
it would be a breakthrough solving the discrete logarithm
problem. Hence, in particular, despite common SID, a partner
cannot calculate the PID of the other party, to form a SID of
another session, especially with the cloud. All this is our rationale
for use of the DH numbers as trusted IDs.

2.3 Client Authentication
A client interacts with the cloud through two types of queries
(operations) presented in Section 3. A usual query is an LH*
manipulation, i.e., a record (p-key based) search, insert, update,
delete or (entire file) scan. The record update only affects the non-
key data. The p-key and any record ID remain the same. A signed
query also invokes LH* operations, but the cloud only executes it
if the client authenticates successfully. For every client X, the
signature is the tuple (T, S) that should carry the pair (gx, gxs).
Successful authentication explores the both parties’ capability to
calculate the SID and the quality of the requestor for the
operation. It is successful only if the server receiving the signature
calculates that Ts = S. According to DH scheme and for all the
reasons in Section 2.2 above, the server trusts the client then to be
X. Next, the server may check whether T matches the TID in
appropriate catalog. The matching means that X has the claimed
capability.

Which server performs the authentication depends on the query.
For a CSCP operation involving only a p-key based LH*
operation, we recall that an LH* client sometimes commits an
addressing error, sending the operation to an outdated address.
Such error leads to one or at most two hops towards the correct
server (bucket), see Section 2.5 below. For these operations, the
correct server authenticates the client A CSCP query may also
involve an LH* scan. The client sends (maps) this one only to the
buckets known to the client image, at most. These may be not all
the buckets in the file. The buckets getting the scan map it
therefore through hops to ultimately every bucket. A CSCP scan
is authenticated only by the servers that get it from the client.
Since all the servers have the same cloud PID s, all fit the
(unique) SID formed by the client, using gs.

2.4 Data Encryption and Storage
The owner encrypts every value in a record with a new key using
a strong encryption scheme. The LH* p-key is not encrypted as
without semantics. If the actual data record ID carries
information, e.g., as does a passport number, a one-way hash
should convert it to the p-key.

2.5 Catalogs
Conceptually, each of three CSCP catalogs in the cloud is a
relational table. We use the RDB conventions for catalogs’
structure. However, CSCP manipulates here the catalogs as the
(physical) LH* files only.

We store (client) data records in the data catalog D (DID, OID,
ED). DID is the data record p-key in the relational sense(tuple
ID). It is one-way hashed if needed to form the actual LH* p-key.
OID is the TID of the owner. ED contains the encrypted data.

Each grant forms a record of grant catalog G (RID, DID, PS).
RID is the grantee’s (reader’s) TID. DID identifies the granted
record. Together they form the p-key of a record in G. PS is the
public share. It is the publicly available share of the 2-share secret
encoding an encryption key. The other share is called client share
(CS). CS results from the SID of the grantor and the grantee and
from some one-way hash discussed later. Only these partners
among the normal clients know the SID hence the CS. As we
demonstrate soon, only these partners among the normal clients
may decode the secret, i.e., the key from the PS.

Finally CSCP uses the Client catalog C (CID, TID). Here, each
client has one public record. Admin maintains C. It inserts client
data upon the registration, the latter being beyond CSCP scheme.

All three catalogs being LH* files, all data are in buckets, one per
cloud server. As the catalogs grow, they spread over more
buckets. This results from the LH* splits occurring when buckets
overflow. The LH* file coordinator chooses the bucket to split
through the linear though also circular move of the split pointer.
The data in the splitting bucket are rehashed so that half on the
average migrates to the new bucket. This one receives the cloud
PID s from the splitting bucket.

A client reads, inserts, updates, or deletes a record in an LH* file
using the p-key based address calculation. Each client carries for
this purpose the private image of the file state, consisting of
selected parameters of the actual file. An image can become
outdated, since clients are not aware of splits synchronously. The
request may go to an incorrect bucket. The server forwards it
towards the correct one. As we said, the hop can repeat at most
once. This efficiency is unique to LH* when compared to DHT or
consistent hashing schemes. If hop(s) occurred, an image
adjustment message (IAM) updates the image so that the same
error cannot repeat.

As we signaled, a client can also initiate a scan query Q that
should reach each bucket in the file. For instance, a scan may
broadcast over G query Q requesting to delete every grant over a
given record, since the latter was deleted itself from D. The client
sends a scan in fact only towards some or all the buckets in the
image. These may map Q further so that every bucket yet
unknown to the client gets it once and only once. The the servers
may send results to aggregate or ack (reduce) individually to the
client. Alternatively, they may aggregate them through other
servers. The client gets fewer messages, even only one. In both
cases, some deterministic termination protocol makes the delivery
reliable if needed. All this makes the LH* scans elastic in the
current cloud terminology. Unlike the yet typical Map/Reduce
scan implementations, i.e., GFS and Hadoop based.

3. CSCP DATA MANIPULATION
3.1 Data Record Create
Through this query, the client inserts the data record. When client
X creates a new record D, it is of the form (d,r) with p-key d and
record contents r. X invents an encryption key e and encrypts r
with e to obtain e{r}. X caches e and creates a self-grant over D
in G. The self-grant backups up e , in case X loses it and has no
other grantee over D. To create a self-grant, X calculates the self-
SID gxx. It then calculates C = h(d, gxx) with a one-way hash
function h. C is the self-CS. Next, X calculates the PS, say P, as
e  C. Note that C depends on DID. This is crucial for the scheme
safety, Section 4. Finally, X sends to D the signed (i) insert of
encrypted D = (d, e{r}) and (ii) request for the insert of the self-
grant record (gx, d, P) into G on behalf of X. The correct D server
authenticates the client, by searching C in particular for gx, and
eventually performs the insert. Then, it resends the signed self-
grant insert to G. If hops occur, X get IAMs.

3.2 Grant Record Create
This signed operation inserts a new (grant) record into G. If client
X wants to grant to reader Y the access to record D with DID = d,
X needs to provide Y with encryption key e. X uses the PS for this
purpose. X starts by retrieving e from the cache or from the self-
grant. For the latter, say g, with PS P, X recalculates the self-CS
C, reads P and calculates e as C  P. The correctness of this
calculation when X performs it is easy to see. In contrast, we
recall, no other normal client can calculate C hence may unhide e.

Next, X accesses to Y’s TID gy, cached or in C catalog. Then, X
forms the CS C’ = h (gxy, d) and the PS P’ = C’ e. Finally, X
sends the signed query, say Q, requesting the insert of the grant
record G (gy, d, P’). When the correct G bucket gets Q, it first
authenticates X. If so, the server reads D and matches the TID
against the OID in D. If those match as well it means that X is the
owner of D, so X is allowed to insert G.

3.3 Data Record Read
Through this query, the client reads from D the record with DID
provided as the p-key for the LH* record search. It is an unsigned
operation. Every client can search and retrieve any record.
However, as we already heavily insisted, only a grantee for the
record profits from the retrieval.

3.4 Grant Record Read
This unsigned operation extracts the encryption key e of data
record D with DID d owned by some client X. The reader, say Z,
searching for the grant record (gy, d, P) searches for it using the p-
key (gy, d). Z gets gx from catalog C or from D in D or has it
cached. Z calculates then the CS C = h(d, gxz) and attempts to
unhide the secret by calculating e’ = C  P . It is easily seen that
e’ = e iff Z = Y.

3.5 Data Record Update
Through this signed operation, the owner X alters the data value.
X first reads the data record D from D, retrieving e from the cache
or the self-grant. X then decrypts the data, updates them, and re-
encrypts. X finally issues a signed update to D that differs from a
normal LH* one only by the authentication. The owner does not
change the encryption key what would make the record
unreadable to any grantee. The cloud cannot enforce the
coherence of data and of PSs in grants.

3.6 Data Record Delete
This is a signed query deleting data record D with given DID d
and all the related grants. The correct server (i) authenticates the
owner, (ii) deletes D and (iii) issues the signed scan delete of
every record X in G where X.DID = d.

3.7 Grant Revoke
In overview, this signed operation first deletes the requested
grant, identified by its p-key consisting of RID, say y, & of DID,
say d, of the data record, say D, encrypted with key e. Next, it
rekeys D to new key e’ and changes the PS in every other grant
over D to reflect e’. The rationale is that the client could have e
cached, hence without rekeying would continue to be able to
decrypt D after the revocation. We recall that the grant has the
form (gy, d, P) with P = C  e. To actualize P to P’ hiding e’, one
may XOR P with the symmetric difference  = e  e’. Then P’ =
P  . Only the owner may calculate  but the grant servers may
calculate P’.

In more detail, owner X removing grant record R for client Y over
D, sends the operation with . These arrive to the correct server
of R. The server deletes R and issues a signed scan for all other
grants with DID = d. The scan requests every server with such a
grant, say (gy, d, P) to -update it to (gy, d, P).

A reader familiar with the DH scheme could observe that SID is
the exchanged encryption key. Hence, one could use it directly
for hiding the key in the PS. This would be however a naïve
design. It would be up to the client to carry every PS
actualization. Letting the cloud to do most of the rekeying work
through -updates, should be usually by far more efficient, [8].
Having -updates motivated therefore our CS design discussed in
previous sections. The rationale appears to hold for any
“competitor” to DH for our goal scheme, e.g., RSA. Nevertheless,
deeper study of such directions remains a future work.

3.8 Client Delete
Client Delete removes the given client with all its data and
metadata from the cloud. This signed operation is for Admin only.
It deletes all the owned records and invalidates all cached keys of
the client. To delete thus client X: (1) Admin deletes all records
with CID X from C; (2) Admin deletes every data records D in D
belonging to X, i.e., with OID = gx, saved if needed from C, (3)
Admin deletes every grant R issued by X, i.e., where for every D
from step (2), R.DID = D.DID. Finally, (4) Admin deletes every
grant R to X by some owner Y, i.e., where R.RID = X. For each R,
Admin rekeys the granted data record D and -updates every
related PS. Admin can do it since it knows PID y of every data
owner Y. The enumerated operations use scans. Details are in [8]
since lengthy.

3.9 Client Takeover
This is another operation reserved to Admin. It applies, e.g., to a
departed client with all the data and capabilities to preserve for
another client. Admin uses it also for the client node theft, where
the thief could learn the PID. The takeover brings thus to client Y
all the data and capabilities formerly belonging to another client
X. To change ownership of data, each data record is rekeyed and
updated as belonging now to Y. This triggers changes to all grants
with X as grantor, creating new PSs. Finally, all grants with X as a
grantee are -updated. Details are in [8].

4. CSCP SAFETY
4.1 Threat Model
Our threat model considers adversaries which are clients or
intruders to the servers. We use the popular “honest, but curious”
model. In particular, messages among servers are trusted. Next, an
intruder might attempt to decrypt stored data, but refrains from
any malicious data or software modifications. Thus, the intruder
may use some legitimate cloud insider’s rights to access a server,
e.g., to execute a storage dump. Finally, if the intruder happens to
be also a cloud client, then s/he only attempts as the client the
operations aiming at the data decryption.

On the client side, a client X who is not a reader for data record D
may try to read it. Likewise, a reader of D may attempt to update
D or delete it. Or, the reader may attempt to update, create or
delete a grant on it. Finally a non-grantee may attempt these
operations as well.

Next, as usual, the network between the client and the cloud does
not allow snooping at the transiting data. Then, no client releases
maliciously the PID or any key used to any other client. A client
not being also a cloud intruder may attempt any not granted but
potentially legal manipulation, like we just discussed. The client
and cloud intruder, succeeding to get the cloud PID s, does not
attempt however to use a fake SID, despite the capability to form
any SID in such a case. The reason is that it would not let the
intruder to decrypt any data anyhow, as we show below. The only
result could be a blind modification of some data or metadata.
Hence, it would be a “dishonest” outcome beyond the model.

As discussed, a client site may fall into illegitimate hands. The
illegitimate client may use any apparently legitimate capability, as
long as the client is not deleted or taken over by one with a
different TID.

4.2 Cloud and Client Side Safety
At the cloud side, according to our threat model, the intruder, say
X, who is not a client, only sees encrypted data and CSCP
metadata. The use of a strong encryption scheme makes up to date
impossible to decrypt any record directly. Neither X may decode
any PS. Each CS is by its construction a very large pseudo
random number. By properties of the secret-sharing X cannot
decrypt the key from the PSs. X needs the PID of the attacked PS.
But there are no PIDs at a cloud server. Also no one up to date
broke the well-managed DH scheme so to find PID, say x from
the public wx, hence known also to the cloud intruder. Thus the
stored data are safe against the cloud side intrusion under our
threat model.

At the client side, the safety means first that (i) a grantee, reader
or owner, of record D may always decrypt D, (ii) no normal client
other than the grantee may decrypt D. Also (iii) a reader of D
cannot update or delete D, nor create, update or revoke a grant on
D. Next, (iv) between the normal clients, D gets updated, deleted
only by its owner. Likewise, a grant on D gets created, updated or
delete only by D owner as well. Finally, (v), an illegitimate client
C loses any capability to manipulate D, once C revoke or takeover
occurred.

For (i) the sections defining the algorithmic of the various
operations under the scheme should make clear that any grantee
of D can always decrypt D through cached key or PS of the grant.
The latter possibility remains for D rekeyed any number of times.

For (ii), observe first that the CSCP algorithmic of trusted IDs
guarantees that no client can pretend to be another for ID-secured
operation. More precisely, in addition to the general properties of
the DH calculus, including its robustness, it cannot happen that
client Z (i) makes client X believing that X is in session with some
Y, while the session involves X and Z, and (ii) makes Y similarly
believing in the session with X. This is known as the “monkey in
the middle” attack. The reason is that only Admin issues the PIDs
and posts the TIDs in C, being a trusted party. The attack could
in contrast occur if clients negotiated the SIDs themselves. See
the DH literature for details. The consequences of such an attack
if it could succeed are obvious.

 Next, for (ii), let Y be some client attempting to decrypt D. Y can
be either a former grantee of D or not. In both cases Y can get D
from the cloud. To decrypt D, Y needs its key, say E, in the cache
or has to calculate it from some PS. If Y is not a former grantee, it
cannot have E cached. Y may nevertheless have key E’ of another
record for which Y is/was a grantee in the cache. Whatever E’ is,
we have E ≠ E’ and it is impossible in practice to infer E from
E’. To decode the PS in some grant over D is therefore the only
remaining possibility for Y. The read access to G is not ID-
secured, hence Y can get any grant over D, and any grant record
in general. This by issuing an unsecured search in G, using the
adequate publicly known CID, e.g., of friend known to be a
grantee of D, and DID of D. As for the cloud intruder, the brute
force decoding is however hopeless, at least till now.

Another way Y could try out, is to find whether Y and D owner,
say C, are both grantees over some record D’. Then, Y knows key
E’ of D’ and may always calculate the CS in C’s grant over D’. If
this CS was by any chances the same for D, e.g. it would be
simply the SID of the session between Y and C, then Y would be
able to calculate E, without C’s PID.

Impeaching such an attack is among rationales for our CS design.
The h function calculation makes CS in practice unique for every
DID and SID, i.e., every data record and session. Next, h is one-
way to render up to now impossible to determine the SID. Hence,
whatever are D and D’, knowing CS for D’ would not let Y to
determine CS used for D and decrypt D in consequence.

If in turn Y is a former grantee of D, Y may have E cached. Y is a
former grantee iff the grantor, or the grantor’s takeover or revoke
has revoked the grant. The grantor revoke would delete D, hence,
trivially; Y would not be able to decrypt it. Revoking the Y grant
in both other cases would trigger the rekeying with E’ ≠ E and
impossible to infer from E at present, whatever E could be. No E
would let thus Y to decrypt D anymore.

Finally for (ii), let Y be also the cloud intruder. Y could then see
some DID and the cloud PID s. By definition, a DID is a random
value unrelated to its record data value. Hence, no DID is of use
for Y. With s in contrast, Y could alter the actual TID gy into a
fake one. More precisely, Y could choose gz of any client Z and
generate fake SID gzs used by Z for an ID-secured operation. But,
no CS uses such a SID, only a SID of a session between the
grantor and the grantee, not between a grantee and the cloud.
Hence a fake SID would not let the intruder to decrypt any data
neither.

Next, for (iii), a reader Y attempting to write or delete D, or to
create, update, or delete a grant on D has to issue the ID-secured
query using the SID gys. Any server receiving the query directly
from Y or through LH* forwarding would match Y’s TID gy to D’s
owner TID gc in stored D. Y cannot enter a fake TID into a SID at

present, as no one succeeded breaking the DH scheme yet. The
matching must be negative and the server would not execute the
query.

For (iv), if Y = C, then Y may do all the enumerated updates
through their (tedious) related already discussed algorithmic
details. Otherwise, if Y is not a cloud intruder, the ID verification
will block any such attack. Finally, if Y is also the cloud intruder,
Y could enter gcs and pass the ID check. As we discussed, this
would not allow however Y to decrypt D. Hence, it would only let
Y to perform blind updates creating havoc in the system. Under
our threat model, Y refrains of any such attacks, as “dishonest”,
i.e., malicious ones. A big stick motivating such honest behavior
is that a cloud attacker and client is usually a cloud insider so
among the first to get investigated, as a likely culprit.

Finally, for (v), it is again the already discussed correctness of
tedious details of the client revoke and takeover operations that
proves this facet of CSCP safety.

5. PERFORMANCE ANALYSIS
CSCP performance is analyzed in detail in [8], with respect to
messaging, storage and processing on various types of clouds.
Here we overview the messaging costs that are the basic ones.
The processing costs due to DH calculations, data
encryption/decryption and CS and PS computations appeared
relatively secondary. The analysis is based on the well-known
LH* performance figures [12].

As usual, we measure the messaging performance through the
number of messages and rounds per operation. The data record
search cost S with cached key is Smin = 2 messages at best, in
Rmin = 2 rounds. At worst, there are two LH* hops hence
Smax = Rmax = 4. If the key has to be also brought from the cloud,
we have the costs, say S’ and R‘, of S’ = 4 and R’ = 2 at best, and
S’max = 8 in R’ = 4 rounds. The reason is that the client searches D
and G in parallel.

The LH* hops should be rare. Next, the key should be typically
brought from the cloud infrequently. The average search costs
should thus be close to minimal ones, i.e., Savg = Ravg = 2+. E.g.,
if a data record is on the average read about ten times,
Savg = Ravg  2.2. Detailed  values remain to get determined.
They depend on bucket sizes of D and of G, data record and grant
creation rates etc. These features determine the frequency of hops
for LH* files.

The minimal cost of a data record insert, always with its self-
grant, is Imin = Rmin = 2. The maximal one is Imax = Rmax = 6. Hops
are rare hence we should have Iavg  Imin and Ravg  Rmin. All these
most frequent CSCP costs are constant, i.e., independent of the
file size involved. They offer thus the best scalability. The
remaining infrequent costs are less straightforward to evaluate,
but should remain practical. The search response time appears
from 100s for a RAMCloud to 6-9s for a public one. The
RAMCloud speed is due to absence of DH calculations that costs
at least a few ms. Notice that some see RAMClouds among
dominant trends of the future cloud business. See [8] for details.

6. RELATED WORK
Cloud data privacy (information assurance, safety…), including
trusted identity management, is a paramount goal for the cloud
industry, [2], [4]. Data privacy through the access privileges is
among classical goals of data management with countless
proposals, e.g., [9]. The use of the data encryption for this goal is

more recent. Distributed file system research studied it since the
Andrew FMS. More recently, it appeared practical for the new
data outsourcing needs, [5]. Combination with the ID
management, especially using the DH scheme, proved useful for
the groupware. P2P research also has recently experimented with,
[1]. We are nevertheless aware of only a few cloud specific
proposals. None appears fully competitive to ours.

One recent proposal of the access control through the data owner
side encryption is [16]. The scheme is for the non-cloud
applications. Like CSCP, it uses the symmetric encryption and the
key encoding through one way hash, into so-called tokens. It
provides the same granting capability as CSCP, i.e., the read-only
non-transitive grants. The grant revoke similarly includes the
rekeying. The grants, client and records are however managed
through a dedicated graph structure, where the edges represent the
grants. The graph usually requires less storage than our tabular
catalogs, perhaps several times less. The grant manipulation can
be also faster through the edges instead of our scans. However,
there is no method known for making the graph used easily
scalable and distributed. Unlike the tabular, hash or range
partitioned, structures, already in cloud infrastructures. Finally, in
[16], the secure client identification is not a concern. Neither DH
nor any other trusted ID system is in the scheme.

In contrast, the DH system is within popular MS groupware
SharePoint, [14], derived from Groove. A group uses a unique
shared space, initiated by Admin. Each shared space has its
unique symmetric encryption key and a shared key, the group ID,
for signing the messages and for the (shared) group client ID. If
any client leaves a group, all stored data are rekeyed. Just like in
CSCP. CSCP corresponds further to the mutually suspicious mode
in SharePoint, where each message is signed with the individual
ID of the owner. SharePoint also have a simplified trusted mode,
intended to offset the cost of the DH calculations.

SharePoint is the probably most used of many groupware tools.
All use a central server. None is yet really cloud oriented. Also,
we could not locate any study of SharePoint performance. We
can nevertheless expect that the average time of CSCP data record
read, for practically any data collection size, could be at worst
about that of a single client-to-client SharePoint message in
trusted mode for the limited to TB size SharePoint can apparently
manage at present.

With respect to the DH calculation, there is a huge literature, as
well as for the encryption. See any search engine or [8] for some
pointers to. Finally, the CSCP goal of client-side encryption is
shared by the LH*RE and Clasas schemes, [7], [15].

7. CONCLUSION
CSCP appears practical for cloud privacy, when data owner
disseminates the data to selected readers. It is safe under the most
popular cloud threat model. It also provides the read access about
as fast as possible and of constant cost regardless of data file
scalability. Other CSCP operations have higher costs, but are less
frequent and scale well as well. All this makes the scheme the
best choice at present for its intended goal. The future work on the
scheme should include the simulations, prototyping and

experiments. One may also add capabilities to support additional
threats or expand CSCP current capabilities.

8. ACKNOWLEDGMENTS
The work of Sushil Jajodia was partially supported by the
National Science Foundation under grants CCF-1037987 and CT-
20013A.

REFERENCES
[1] Bonifati, A. Liu, R., Wang, H., W. Distributed and Secure

Access Control in P2P Databases. DBSec 2010.

[2] Cloud Security Alliance. Security Guidance for Critical
 Areas of Focus in Cloud Computing.
https://cloudsecurityalliance.org/csaguide.pdf

[3] Diene, A. W., Litwin. W. Performance Measurements of
RP*:A Scalable Distributed Data Structure For Range
Partitioning. 2000 Intl. Conf. on Information Society in the
21st Century. Aizu City, Japan, 2000

[4] ENISA Cloud Computing Risk Assessment.
http://www.enisa.europa.eu/act/res/other-areas/

[5] Foresti, S. Preserving Privacy in Data Outsourcing. Spinger,
2011

[6] http://www.gemstone.com/products/gemfire.

[7] Jajodia, S., Litwin, W. & Schwarz, Th. LH*RE: A Scalable
Distributed Data Structure with Recoverable Encryption.
IEEE-CLOUD 2010.

[8] Jajodia, S., Litwin, W. & Schwarz, Th. Privacy of Data
Outsourcing to a Cloud for Selected Readers. Res. Rep.
Lamsade, Feb. 2011.

[9] Jajodia, S., Smarati, P., Sapino, M. L., Subrahmanian, V. S.
Flexible support for multiple access control policies. ACM-
TODS, 26(2), 2001.

[10] Kaufman, Ch., Perlman, R., Speciner, M. Network Security:
Private Communication in a Public World. (2nd Ed. Prentice
Hall, 2002

[11] Litwin, W. Moussa, R., Schwarz, Th. LH*RS A Highly-
Available Scalable Distributed Data Structure. ACM TODS,
10, 2005.

[12] Litwin, W., Neimat, M-A., Schneider, D. LH* - A Scalable
Distributed Data Structure. ACM TODS. 12, 1996.

[13] Ousterhout, J. & al. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. ACM SIGOPS
Operating Systems Review, 43 4, 2010.

[14] Sharepoint 2010. http://sharepoint.microsoft.com/en-
us/pages/default.aspx

[15] Schwarz, Th., Long, D. Clasas: A Key-Store for the Cloud,
MASCOTS 2010

[16] Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P. Encryption policies for regulating access to
outsourced data. ACM TODS, 35,2, 2010.

