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ABSTRACT 
We propose a scheme using client-side encryption with 
symmetric keys for the privacy of data outsourced to the cloud for 
selected readers. The scheme is safe under the most popular 
"honest, but curious" model. Readers get the keys from access 
grants or have them cached. LH* files store cloud data and 
metadata. Diffie-Hellman scheme authenticates clients. Every 
client can read any data, but only a grantee decrypts the content. 
Access to data is usually the fastest possible that is two messages 
and the decryption, regardless of the cloud scale up. Data or grant 
creation or update costs are also constant with a few messages and 
fast processing. All these features serve our main goal: the search 
speed and scalability yet unmatched to our best knowledge. The 
scheme is finally intentionally very simple.  

Categories and Subject Descriptors  

C.2.4 [Cloud Computing]  

General Terms 
Algorithms, Performance, Security 

Keywords 
Scalable Distributed Data Structure 

1. INTRODUCTION 
The ever growing volume of data to store makes clouds attractive 
to data owners. Outsourcing to the cloud is often potentially more 
useful than caring about the private hardware. Usually, a data 
owner disseminates the cloud data to selected readers only. The 
update and access granting privileges remain with the owner. A 
course secretariat may distribute a class material to the students, 
letting each to read it, copy, print out… But, no student can 
modify the original and only a class member should get any 
documents. A student may depart; the secretariat should revoke 
any of her/his access rights. An employee usually produces 
documents to be read, perhaps copied or printed, but not 
modified, by other selected employees or customers. Only these 
persons should have the access, an unauthorized one could end up 
at Wikileaks. A “friend” in a social network often wishes to post 
information only for the “friends” and only for them. The saga of 
the Facebook Quit Day showed how strong this need became.  

Etc.  

In this context, the cloud privacy (information assurance, safety, 
security…), is a paramount requirement, [2], [4]. No cloud 
storage intruder (adversary…) or unauthorized client should see 
the outsourced data. A natural approach is the client (owner) side 
encryption, despite the industrial push towards the server-side 
one, [7]. Symmetric encryption, e.g. the AES 256, appears the 
choice. The read grant should then somehow pass the encryption 
key to the grantee. To keep the key and grant (meta)data private, 
an obvious way is to have them at the grantor and grantees nodes 
only. The downside is potential for loss. A parade is the backup of 
the keys in the cloud. The client or a trusted administrator may 
recover them. The backup should be secure under a common 
threat model. The algorithms should be scalable and distributed, 
staying efficient under the data deluge.  

We propose the scheme termed CSCP, for Client Share for Cloud 
Privacy, aiming at these goals. The owner encrypts every data 
record with unique key, using a symmetric encryption. Clients 
cache the keys, but all keys are also in the cloud. Each key in the 
cloud is hidden in a public share (PS) produced by the owner.  
Each public share belongs to a two-share secret. The secret is the 
key. The other share is the client share (CS), every CS being 
specific to the owner and each selected reader. Exceptionally, 
e.g., when the client privacy goes awry, a “super-client” termed 
Admin may rescue.  

The CSCP client data and metadata records form three catalogs. 
These are physically the LH* files, [12], [11]. Such files have 
records structured into (primary key, (data) value) pairs. Records 
are stored according to the scalable distributed linear hash over 
the primary key. The CSCP performance announced in the 
Abstract are due to LH* efficiency, together with the speed of the 
encryption scheme, as well as of DH calculation and of one-way 
hash as we explain later. The cloud read access is usually the 
fastest possible, i.e., time for two messages per record plus the 
symmetric decryption. More costly CSCP cloud updates should 
be less frequent in practice. The most costly ones, i.e., the grant 
revoke and the client delete or takeover should be the least 
frequent.  

We optimized CSCP for the read access and scalability under 
rapid data growth to practically any size, e.g., Exabyte. The result 
is yet unmatched to our best knowledge. The scheme has also a 
rather negligible storage overhead. It is finally intentionally 
simple. Besides the known tools, one needs only three files for 
tabular catalogs with a few attributes.  

Space limitations force us to present CSCP only in short. Details 
and variants trading selected features for other properties, useful 
for selected applications are in [8]. Section 2 presents the CSCP 
architecture. Section 3 discusses the data manipulation. Section 4 
analyzes the safety. Section 5 overviews the scheme’s 
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performance. Section 6 deals with the related work. Section 7 
briefly concludes and presents the future work.  

2. CSCP ARCHITECTURE  
2.1 Gross Architecture  
A CSCP cloud is public, private or hybrid. A public cloud, e.g.  
Amazon or Azure, offers storage and related services, for rent at 
one or more data centers. A private cloud is for the internal use, 
e.g., Google or Yahoo. A hybrid cloud mixes both.   

Every cloud is a collection of server nodes (servers) storing data 
manipulated by client nodes (clients). The clients are autonomous 
and initiate operations. They expect the cloud servers always 
available. In contrast, a client can be sometimes off-line. The 
cloud storage can be dominantly disk, flash or RAM.  The latter 
constitutes a RAM Cloud. These are up to now only in private 
clouds, e.g., SDDS_2000 or Gemfire, [3], [6], [11], [13].  
Depending on the cloud, the messaging time greatly varies. It is 3-
5s per message at least for a typical public cloud, through a dozen 
of milliseconds for a private one, to under 100 microseconds for a 
RAM Cloud. A CSCP cloud can be any of these. 

Every CSCP cloud has a specific client termed Admin. Admin 
provides exclusive trusted capabilities we introduce progressively. 
These are of exceptional use, avoiding to Admin being a hot-spot. 
They let Admin to manipulate the data of any client. Admin can 
be in also the LH* file coordinator. By usual analogy, Admin is a 
CSCP “super-client”. Any other client is a normal one.  

Every CSCP client X may create a data record. The client uses 
symmetric encryption on the new record and inserts the encrypted 
record, say D, in the cloud. It selects the server according to LH* 
addressing rules. X is then also the sole owner of D. Later, the 
ownership can move to another (unique) client and so on. Only 
the owner (i) has update, rekeying, and deletion rights on D, (ii) 
may disseminate D.  

To disseminate D to another client Y, the owner X grants Y the 
read access to D. The grant hides the encryption key. Among 
normal clients, only X and the grantee Y may unhide it. Every 
other normal client can also read D. It will face however only the 
encrypted result. The grantee Y can make a fully owned copy of D 
and disseminate it, unless the application interface limits copying. 
The grantor X can finally revoke any of its grants, e.g. to Y. Y 
cannot then decrypt D anymore.  

An owner X of data D can issue a grant to a reader representing in 
fact a group of users (a g-client). The g-client disseminates 
transparently for X a fully owned copy of D to these users, as we 
discuss more in [8]. The groups can be static or dynamic. 

For all data and metadata, CSCP uses three catalogs, Section 2.5.  
These are scalable distributed linear hash (LH*) files with records 
structured as usual (key, value) pairs [12]. The value can be a 
large field. The key is a primary key, p-key, in the typical sense, 
i.e., without semantics for good hash.  P-key can be derived from 
a single or multiple subfields in the value field, through 
cryptographically strong one-way hash, e.g., SHA 256.  

2.2 Client Identity 
Every CSCP client has a (unique) public customary identity 
(CID), e.g., an email address.  Every client also carries a (unique) 
public trusted (certified) ID, we call TID. The client carries 
finally a (unique) secret private ID, (PID). TID and PID obey the 
Diffie-Hellman scheme with published numbers, (DH), [10]. If X 

is a CID, we usually note PID as x. X’s TID is then equal to gx, 
where g is some base. The calculation is done in a finite (strong 
prime) field, e.g., with 512b numbers. The field and g are the 
common knowledge.   

All cloud servers share a PID s and publish the corresponding 
TID gs. Basically, Admin sets up any PID and recovers it if need 
occurs. A variant in [8] allows however the client to change the 
PID, even hiding the new one to Admin.  Next, two clients or 
client and the cloud communicate all their data within their CSCP 
session. Each session has an ID (SID) formed from the client 
PIDs and TIDs as the Diffie-Hellman key. If x and y are thus 
PIDs, then the SID is gxy. Each partner can efficiently calculate 
the SID from its own PID and the TID of the other party, as 
(gy)x = (gx)y = gxy. , Every SID is unique to two parties. Also, the 
common belief in the security field states that only the two parties 
can calculate the SID unless one of the PIDs or entire SID of 
course, has leaked out to an intruder. Finally, it is believed that no 
one can determine the PID x or y from the SID gxy. If it happened, 
it would be a breakthrough solving the discrete logarithm 
problem. Hence, in particular, despite common SID, a partner 
cannot calculate the PID of the other party, to form a SID of 
another session, especially with the cloud. All this is our rationale 
for use of the DH numbers as trusted IDs.    

2.3 Client Authentication 
A client interacts with the cloud through two types of queries 
(operations) presented in Section 3. A usual query is an LH* 
manipulation, i.e., a record (p-key based) search, insert, update, 
delete or (entire file) scan. The record update only affects the non-
key data. The p-key and any record ID remain the same. A signed 
query also invokes LH* operations, but the cloud only executes it 
if the client authenticates successfully. For every client X, the 
signature is the tuple (T, S) that should carry the pair (gx, gxs). 
Successful authentication explores the both parties’ capability to 
calculate the SID and the quality of the requestor for the 
operation. It is successful only if the server receiving the signature 
calculates that Ts = S. According to DH scheme and for all the 
reasons in Section 2.2 above, the server trusts the client then to be 
X.  Next, the server may check whether T matches the TID in 
appropriate catalog. The matching means that X has the claimed 
capability.  

Which server performs the authentication depends on the query. 
For a CSCP operation involving only a p-key based LH* 
operation, we recall that an LH* client sometimes commits an 
addressing error, sending the operation to an outdated address. 
Such error leads to one or at most two hops towards the correct 
server (bucket), see Section 2.5 below.  For these operations, the 
correct server authenticates the client A CSCP query may also 
involve an LH* scan. The client sends (maps) this one only to the 
buckets known to the client image, at most. These may be not all 
the buckets in the file.  The buckets getting the scan map it 
therefore through hops to ultimately every bucket. A CSCP scan 
is authenticated only by the servers that get it from the client.  
Since all the servers have the same cloud PID s, all fit the 
(unique) SID formed by the client, using gs.  

2.4 Data Encryption and Storage 
The owner encrypts every value in a record with a new key using 
a strong encryption scheme. The LH* p-key is not encrypted as 
without semantics. If the actual data record ID carries 
information, e.g., as does a passport number, a one-way hash 
should convert it to the p-key.  



 

 

2.5 Catalogs 
Conceptually, each of three CSCP catalogs in the cloud is a 
relational table. We use the RDB conventions for catalogs’ 
structure. However, CSCP manipulates here the catalogs as the 
(physical) LH* files only. 

We store (client) data records in the data catalog D (DID, OID, 
ED).  DID is the data record p-key in the relational sense(tuple 
ID). It is one-way hashed if needed to form the actual LH* p-key.  
OID is the TID of the owner. ED contains the encrypted data.  

Each grant forms a record of grant catalog G (RID, DID, PS). 
RID is the grantee’s (reader’s) TID. DID identifies the granted 
record. Together they form the p-key of a record in G. PS is the 
public share. It is the publicly available share of the 2-share secret 
encoding an encryption key. The other share is called client share 
(CS). CS results from the SID of the grantor and the grantee and 
from some one-way hash discussed later. Only these partners 
among the normal clients know the SID hence the CS.  As we 
demonstrate soon, only these partners among the normal clients 
may decode the secret, i.e., the key from the PS.   

Finally CSCP uses the Client catalog C (CID, TID). Here, each 
client has one public record. Admin maintains C. It inserts client 
data upon the registration, the latter being beyond CSCP scheme. 

All three catalogs being LH* files, all data are in buckets, one per 
cloud server. As the catalogs grow, they spread over more 
buckets. This results from the LH* splits occurring when buckets 
overflow. The LH* file coordinator chooses the bucket to split 
through the linear though also circular move of the split pointer. 
The data in the splitting bucket are rehashed so that half on the 
average migrates to the new bucket. This one receives the cloud 
PID s from the splitting bucket.   

A client reads, inserts, updates, or deletes a record in an LH* file 
using the p-key based address calculation. Each client carries for 
this purpose the private image of the file state, consisting of 
selected parameters of the actual file. An image can become 
outdated, since clients are not aware of splits synchronously.  The 
request may go to an incorrect bucket. The server forwards it 
towards the correct one. As we said, the hop can repeat at most 
once. This efficiency is unique to LH* when compared to DHT or 
consistent hashing schemes. If hop(s) occurred, an image 
adjustment message (IAM) updates the image so that the same 
error cannot repeat.  

As we signaled, a client can also initiate a scan query Q that 
should reach each bucket in the file. For instance, a scan may 
broadcast over G query Q requesting to delete every grant over a 
given record, since the latter was deleted itself from D. The client 
sends a scan in fact only towards some or all the buckets in the 
image. These may map Q further so that every bucket yet 
unknown to the client gets it once and only once. The the servers 
may send results to aggregate or ack (reduce) individually to the 
client. Alternatively, they may aggregate them through other 
servers. The client gets fewer messages, even only one. In both 
cases, some deterministic termination protocol makes the delivery 
reliable if needed. All this makes the LH* scans elastic in the 
current cloud terminology. Unlike the yet typical Map/Reduce 
scan implementations, i.e., GFS and Hadoop based.     

3. CSCP DATA MANIPULATION 
3.1 Data Record Create 
Through this query, the client inserts the data record.  When client 
X creates a new record D, it is of the form (d,r) with p-key d and 
record contents r. X invents an encryption key e and encrypts r 
with e to obtain e{r}. X caches e and creates a self-grant over D 
in G. The self-grant backups up e , in case X loses it and has no 
other grantee over D. To create a self-grant, X calculates the self-
SID gxx. It then calculates C = h(d, gxx)  with a one-way hash 
function h. C is the self-CS. Next, X calculates the PS, say P, as 
e  C. Note that C depends on DID. This is crucial for the scheme 
safety, Section 4. Finally, X sends to D the signed (i) insert of 
encrypted D = (d, e{r}) and (ii) request for the insert of the self-
grant record (gx, d, P) into G on behalf of X. The correct D server 
authenticates the client, by searching C in particular for gx, and 
eventually performs the insert. Then, it resends the signed self-
grant insert to G.  If hops occur, X get IAMs.     

3.2 Grant Record Create 
This signed operation inserts a new (grant) record into G. If client 
X wants to grant to reader Y the access to record D with DID = d, 
X needs to provide Y with encryption key e. X uses the PS for this 
purpose. X starts by retrieving e from the cache or from the self-
grant.  For the latter, say g, with PS P, X recalculates the self-CS 
C, reads P and calculates e as C  P. The correctness of this 
calculation when X performs it is easy to see. In contrast, we 
recall, no other normal client can calculate C hence may unhide e. 

Next, X accesses to Y’s TID gy, cached or in C catalog. Then, X 
forms the CS C’ = h (gxy, d) and the PS P’ = C’ e.  Finally, X 
sends the signed query, say Q, requesting the insert of the grant 
record G (gy, d, P’). When the correct G bucket gets Q, it first 
authenticates X. If so, the server reads D and matches the TID 
against the OID in D. If those match as well it means that X is the 
owner of D, so X is allowed to insert G.  

3.3 Data Record Read 
Through this query, the client reads from D the record with DID 
provided as the p-key for the LH* record search. It is an unsigned 
operation. Every client can search and retrieve any record. 
However, as we already heavily insisted, only a grantee for the 
record profits from the retrieval.  

3.4 Grant Record Read 
This unsigned operation extracts the encryption key e of data 
record D with DID d owned by some client X.  The reader, say Z, 
searching for the grant record (gy, d, P) searches for it using the p-
key (gy, d). Z gets gx from catalog C or from D in D or has it 
cached. Z calculates then the CS C = h(d, gxz) and attempts to 
unhide the secret by calculating e’ = C  P . It is easily seen that 
e’ = e iff Z = Y. 

3.5 Data Record Update 
Through this signed operation, the owner X alters the data value. 
X first reads the data record D from D, retrieving e from the cache 
or the self-grant. X then decrypts the data, updates them, and re-
encrypts. X finally issues a signed update to D that differs from a 
normal LH* one only by the authentication. The owner does not 
change the encryption key what would make the record 
unreadable to any grantee. The cloud cannot enforce the 
coherence of data and of PSs in grants. 



 

 

3.6 Data Record Delete 
This is a signed query deleting data record D with given DID d 
and all the related grants. The correct server (i) authenticates the 
owner, (ii) deletes D and (iii) issues the signed scan delete of 
every record X in G where X.DID = d.  

3.7 Grant Revoke 
In overview, this signed operation first deletes the requested 
grant, identified by its p-key consisting of RID, say y, & of DID, 
say d, of the data record, say D, encrypted with key e. Next, it 
rekeys D to new key e’ and changes the PS  in every other grant 
over D to reflect e’. The rationale is that the client could have e 
cached, hence without rekeying would continue to be able to 
decrypt D after the revocation.  We recall that the grant has the 
form (gy, d, P) with P = C  e. To actualize P to P’ hiding e’, one 
may XOR P with the symmetric difference  = e  e’. Then P’ = 
P  . Only the owner may calculate  but the grant servers may 
calculate P’.  

In more detail, owner X removing grant record R for client Y over 
D, sends the operation with .  These arrive to the correct server 
of R. The server deletes R and issues a signed scan for all other 
grants with DID = d. The scan requests every server with such a 
grant, say (gy, d, P) to -update it to (gy, d, P).  

A reader familiar with the DH scheme could observe that SID is 
the exchanged encryption key. Hence, one could use it directly 
for hiding the key in the PS. This would be however a naïve 
design. It would be up to the client to carry every PS 
actualization. Letting the cloud to do most of the rekeying work 
through -updates, should be usually by far more efficient, [8]. 
Having -updates motivated therefore our CS design discussed in 
previous sections. The rationale appears to hold for any 
“competitor” to DH for our goal scheme, e.g., RSA. Nevertheless, 
deeper study of such directions remains a future work.         

3.8 Client Delete 
Client Delete removes the given client with all its data and 
metadata from the cloud. This signed operation is for Admin only. 
It deletes all the owned records and invalidates all cached keys of 
the client. To delete thus client X: (1) Admin deletes all records 
with CID X from C; (2) Admin deletes every data records D in D 
belonging to X, i.e., with OID = gx, saved if needed from C, (3) 
Admin deletes every grant R issued by X, i.e., where for every D 
from step (2), R.DID = D.DID. Finally, (4) Admin deletes every 
grant R to X by some owner Y, i.e., where R.RID = X. For each R, 
Admin rekeys the granted data record D and -updates every 
related PS. Admin can do it since it knows PID y of every data 
owner Y.  The enumerated operations use scans.  Details are in [8] 
since lengthy.   

3.9 Client Takeover 
This is another operation reserved to Admin. It applies, e.g., to a 
departed client with all the data and capabilities to preserve for 
another client. Admin uses it also for the client node theft, where 
the thief could learn the PID. The takeover brings thus to client Y 
all the data and capabilities formerly belonging to another client 
X. To change ownership of data, each data record is rekeyed and 
updated as belonging now to Y. This triggers changes to all grants 
with X as grantor, creating new PSs. Finally, all grants with X as a 
grantee are -updated. Details are in [8]. 

4. CSCP SAFETY 
4.1 Threat Model 
Our threat model considers adversaries which are clients or 
intruders to the servers. We use the popular “honest, but curious” 
model. In particular, messages among servers are trusted. Next, an 
intruder might attempt to decrypt stored data, but refrains from 
any malicious data or software modifications. Thus, the intruder 
may use some legitimate cloud insider’s rights to access a server, 
e.g., to execute a storage dump. Finally, if the intruder happens to 
be also a cloud client, then s/he only attempts as the client the 
operations aiming at the data decryption. 

On the client side, a client X who is not a reader for data record D 
may try to read it. Likewise, a reader of D may attempt to update 
D or delete it. Or, the reader may attempt to update, create or 
delete a grant on it. Finally a non-grantee may attempt these 
operations as well.  

Next, as usual, the network between the client and the cloud does 
not allow snooping at the transiting data. Then, no client releases 
maliciously the PID or any key used to any other client. A client 
not being also a cloud intruder may attempt any not granted but 
potentially legal manipulation, like we just discussed. The client 
and cloud intruder, succeeding to get the cloud PID s, does not 
attempt however to use a fake SID, despite the capability to form 
any SID in such a case. The reason is that it would not let the 
intruder to decrypt any data anyhow, as we show below. The only 
result could be a blind modification of some data or metadata. 
Hence, it would be a “dishonest” outcome beyond the model.   

As discussed, a client site may fall into illegitimate hands. The 
illegitimate client may use any apparently legitimate capability, as 
long as the client is not deleted or taken over by one with a 
different TID.     

4.2 Cloud and Client Side Safety 
At the cloud side, according to our threat model, the intruder, say 
X, who is not a client, only sees encrypted data and CSCP 
metadata. The use of a strong encryption scheme makes up to date 
impossible to decrypt any record directly. Neither X may decode 
any PS. Each CS is by its construction a very large pseudo 
random number. By properties of the secret-sharing X cannot 
decrypt the key from the PSs. X needs the PID of the attacked PS. 
But there are no PIDs at a cloud server. Also no one up to date 
broke the well-managed DH scheme so to find PID, say x from 
the public wx, hence known also to the cloud intruder. Thus the 
stored data are safe against the cloud side intrusion under our 
threat model. 

At the client side, the safety means first that (i) a grantee, reader 
or owner, of record D may always decrypt D, (ii) no normal client 
other than the grantee may decrypt D. Also (iii) a reader of D 
cannot update or delete D, nor create, update or revoke a grant on 
D. Next, (iv) between the normal clients, D gets updated, deleted 
only by its owner. Likewise, a grant on D gets created, updated or 
delete only by D owner as well. Finally, (v), an illegitimate client 
C loses any capability to manipulate D, once C revoke or takeover 
occurred.     

For (i) the sections defining the algorithmic of the various 
operations under the scheme should make clear that any grantee 
of D can always decrypt D through cached key or PS of the grant. 
The latter possibility remains for D rekeyed any number of times.   



 

 

For (ii), observe first that the CSCP algorithmic of trusted IDs 
guarantees that no client can pretend to be another for ID-secured 
operation. More precisely, in addition to the general properties of 
the DH calculus, including its robustness, it cannot happen  that 
client Z (i) makes client X believing that X is in session with some 
Y, while the session involves X and Z, and (ii) makes Y similarly 
believing in the session with X.  This is known as the “monkey in 
the middle” attack.  The reason is that only Admin issues the PIDs 
and posts the TIDs in C, being a trusted party.  The attack could 
in contrast occur if clients negotiated the SIDs themselves. See 
the DH literature for details.  The consequences of such an attack 
if it could succeed are obvious. 

 Next, for (ii), let Y be some client attempting to decrypt D. Y can 
be either a former grantee of D or not. In both cases Y can get D 
from the cloud. To decrypt D, Y needs its key, say E, in the cache 
or has to calculate it from some PS. If Y is not a former grantee, it 
cannot have E cached.  Y may nevertheless have key E’ of another 
record for which Y is/was a grantee in the cache. Whatever E’ is, 
we have E ≠ E’ and it is impossible    in practice to infer E from 
E’. To decode the PS in some grant over D is therefore the only 
remaining possibility for Y. The read access to G is not ID-
secured, hence Y can get any grant over D, and any grant record 
in general. This by issuing an unsecured search in G, using the 
adequate publicly known CID, e.g., of friend known to be a 
grantee of D, and DID of D.  As for the cloud intruder, the brute 
force decoding is however hopeless, at least till now.  

Another way Y could try out, is to find whether Y and D owner, 
say C, are both grantees over some record D’. Then, Y knows key 
E’ of D’ and may always calculate the CS in C’s grant over D’. If 
this CS was by any chances the same for D, e.g. it would be 
simply the SID of the session between Y and C, then Y would be 
able to calculate E, without C’s PID.   

Impeaching such an attack is among rationales for our CS design. 
The h function calculation makes CS in practice unique for every 
DID and SID, i.e., every data record and session. Next, h is one-
way to render up to now impossible to determine the SID. Hence, 
whatever are D and D’, knowing CS for D’ would not let Y to 
determine CS used for D and decrypt D in consequence.  

If in turn Y is a former grantee of D, Y may have E cached.  Y is a 
former grantee iff the grantor, or the grantor’s takeover or revoke 
has revoked the grant. The grantor revoke would delete D, hence, 
trivially; Y would not be able to decrypt it. Revoking the Y grant 
in both other cases would trigger the rekeying with E’ ≠ E and 
impossible to infer from E at present, whatever E could be. No E 
would let thus Y to decrypt D anymore. 

Finally for (ii), let Y be also the cloud intruder. Y could then see 
some DID and the cloud PID s. By definition, a DID is a random 
value unrelated to its record data value. Hence, no DID is of use 
for Y. With s in contrast, Y could alter the actual TID gy into a 
fake one. More precisely, Y could choose gz of any client Z and 
generate fake SID gzs used by Z for an ID-secured operation. But, 
no CS uses such a SID, only a SID of a session between the 
grantor and the grantee, not between a grantee and the cloud. 
Hence a fake SID would not let the intruder to decrypt any data 
neither.   

Next, for (iii), a reader Y attempting to write or delete D, or to 
create, update, or delete a grant on D has to issue the ID-secured 
query using the SID gys. Any server receiving the query directly 
from Y or through LH* forwarding would match Y’s TID gy to D’s 
owner TID gc in stored D. Y cannot enter a fake TID into a SID at 

present, as no one succeeded breaking the DH scheme yet. The 
matching must be negative and the server would not execute the 
query.   

For (iv), if Y = C, then Y may do all the enumerated updates 
through their (tedious) related already discussed algorithmic 
details. Otherwise, if Y is not a cloud intruder, the ID verification 
will block any such attack. Finally, if Y is also the cloud intruder, 
Y could enter gcs and pass the ID check. As we discussed, this 
would not allow however Y to decrypt D. Hence, it would only let 
Y to perform blind updates creating havoc in the system. Under 
our threat model, Y refrains of any such attacks, as “dishonest”, 
i.e., malicious ones. A big stick motivating such honest behavior 
is that a cloud attacker and client is usually a cloud insider so 
among the first to get investigated, as a likely culprit. 

Finally, for (v), it is again the already discussed correctness of 
tedious details of the client revoke and takeover operations that 
proves this facet of CSCP safety.  

5. PERFORMANCE ANALYSIS 
CSCP performance is analyzed in detail in [8], with respect to 
messaging, storage and processing on various types of clouds. 
Here we overview the messaging costs that are the basic ones. 
The processing costs due to DH calculations, data 
encryption/decryption and CS and PS computations appeared 
relatively secondary.  The analysis is based on the well-known 
LH* performance figures [12]. 

As usual, we measure the messaging performance through the 
number of messages and rounds per operation. The data record 
search cost S with cached key is Smin = 2 messages at best, in 
Rmin = 2 rounds. At worst, there are two LH* hops hence 
Smax = Rmax = 4. If the key has to be also brought from the cloud, 
we have the costs, say S’ and R‘, of S’ = 4 and R’ = 2 at best, and 
S’max = 8 in R’ = 4 rounds. The reason is that the client searches D 
and G in parallel.  

The LH* hops should be rare. Next, the key should be typically 
brought from the cloud infrequently. The average search costs 
should thus be close to minimal ones, i.e., Savg = Ravg = 2+. E.g., 
if a data record is on the average read about ten times, 
Savg = Ravg  2.2. Detailed  values remain to get determined. 
They depend on bucket sizes of D and of G, data record and grant 
creation rates etc. These features determine the frequency of hops 
for LH* files.  

The minimal cost of a data record insert, always with its self-
grant, is Imin = Rmin = 2. The maximal one is Imax = Rmax = 6.  Hops 
are rare hence we should have Iavg  Imin and Ravg  Rmin.  All these 
most frequent CSCP costs are constant, i.e., independent of the 
file size involved. They offer thus the best scalability. The 
remaining infrequent costs are less straightforward to evaluate, 
but should remain practical. The search response time appears 
from 100s for a RAMCloud to 6-9s for a public one. The 
RAMCloud speed is due to absence of DH calculations that costs 
at least a few ms. Notice that some see RAMClouds among 
dominant trends of the future cloud business. See [8] for details. 

6. RELATED WORK 
Cloud data privacy (information assurance, safety…), including 
trusted identity management, is a paramount goal for the cloud 
industry, [2], [4]. Data privacy through the access privileges is 
among classical goals of data management with countless 
proposals, e.g., [9]. The use of the data encryption for this goal is 



 

 

more recent. Distributed file system research studied it since the 
Andrew FMS. More recently, it appeared practical for the new 
data outsourcing needs, [5]. Combination with the ID 
management, especially using the DH scheme, proved useful for 
the groupware. P2P research also has recently experimented with, 
[1]. We are nevertheless aware of only a few cloud specific 
proposals. None appears fully competitive to ours.  

One recent proposal of the access control through the data owner 
side encryption is [16]. The scheme is for the non-cloud 
applications. Like CSCP, it uses the symmetric encryption and the 
key encoding through one way hash, into so-called tokens. It 
provides the same granting capability as CSCP, i.e., the read-only 
non-transitive grants. The grant revoke similarly includes the 
rekeying. The grants, client and records are however managed 
through a dedicated graph structure, where the edges represent the 
grants. The graph usually requires less storage than our tabular 
catalogs, perhaps several times less. The grant manipulation can 
be also faster through the edges instead of our scans. However, 
there is no method known for making the graph used easily 
scalable and distributed.  Unlike the tabular, hash or range 
partitioned, structures, already in cloud infrastructures. Finally, in 
[16], the secure client identification is not a concern. Neither DH 
nor any other trusted ID system is in the scheme. 

In contrast, the DH system is within popular MS groupware 
SharePoint, [14], derived from Groove. A group uses a unique 
shared space, initiated by Admin. Each shared space has its 
unique symmetric encryption key and a shared key, the group ID, 
for signing the messages and for the (shared) group client ID. If 
any client leaves a group, all stored data are rekeyed. Just like in 
CSCP. CSCP corresponds further to the mutually suspicious mode 
in SharePoint, where each message is signed with the individual 
ID of the owner. SharePoint also have a simplified trusted mode, 
intended to offset the cost of the DH calculations.  

SharePoint is the probably most used of many groupware tools. 
All use a central server. None is yet really cloud oriented. Also, 
we could not locate any study of SharePoint  performance. We 
can nevertheless expect that the average time of CSCP data record 
read, for practically any data collection size, could be at worst 
about that of a single client-to-client SharePoint message in 
trusted mode for the limited to TB size SharePoint can apparently 
manage at present. 

With respect to the DH calculation, there is a huge literature, as 
well as for the encryption. See any search engine or [8] for some 
pointers to. Finally, the CSCP goal of client-side encryption is 
shared by the LH*RE and Clasas schemes, [7], [15].  

7. CONCLUSION 
CSCP appears practical for cloud privacy, when data owner 
disseminates the data to selected readers.  It is safe under the most 
popular cloud threat model. It also provides the read access about 
as fast as possible and of constant cost regardless of data file 
scalability. Other CSCP operations have higher costs, but are less 
frequent and scale well as well. All this makes the scheme the 
best choice at present for its intended goal. The future work on the 
scheme should include the simulations, prototyping and 

experiments. One may also add capabilities to support additional 
threats or expand CSCP current capabilities. 

8. ACKNOWLEDGMENTS 
The work of Sushil Jajodia was partially supported by the 
National Science Foundation under grants CCF-1037987 and CT-
20013A. 

REFERENCES 
[1] Bonifati, A. Liu, R., Wang, H., W. Distributed and   Secure 

Access Control in P2P Databases. DBSec 2010.  

[2] Cloud Security Alliance. Security Guidance for Critical 
 Areas of Focus in Cloud Computing. 
https://cloudsecurityalliance.org/csaguide.pdf  

[3] Diene, A. W., Litwin. W. Performance Measurements of 
RP*:A Scalable Distributed Data Structure For Range 
Partitioning. 2000 Intl. Conf. on Information Society in the 
21st Century. Aizu City, Japan, 2000 

[4] ENISA Cloud Computing Risk Assessment.  
http://www.enisa.europa.eu/act/res/other-areas/  

[5] Foresti, S. Preserving Privacy in Data Outsourcing. Spinger, 
2011  

[6]  http://www.gemstone.com/products/gemfire.  

[7] Jajodia, S., Litwin, W. & Schwarz, Th. LH*RE: A Scalable        
Distributed Data Structure with Recoverable Encryption. 
IEEE-CLOUD 2010.  

[8] Jajodia, S., Litwin, W. & Schwarz, Th. Privacy of Data 
Outsourcing to a Cloud for Selected Readers. Res. Rep. 
Lamsade, Feb. 2011.  

[9] Jajodia, S., Smarati, P., Sapino, M. L., Subrahmanian, V. S. 
Flexible support for multiple access control policies. ACM- 
TODS, 26(2), 2001.  

[10] Kaufman, Ch., Perlman, R., Speciner, M. Network Security: 
Private Communication in a Public World. (2nd Ed. Prentice 
Hall, 2002  

[11] Litwin, W. Moussa, R., Schwarz, Th. LH*RS A Highly-
Available Scalable Distributed Data Structure. ACM TODS, 
10, 2005.   

[12] Litwin, W., Neimat, M-A., Schneider, D. LH* - A Scalable 
Distributed Data Structure. ACM TODS. 12, 1996.  

[13] Ousterhout, J. & al. The Case for RAMClouds: Scalable 
High-Performance Storage Entirely in DRAM. ACM SIGOPS 
Operating Systems Review, 43 4, 2010. 

[14] Sharepoint 2010. http://sharepoint.microsoft.com/en-  
us/pages/default.aspx 

[15] Schwarz, Th., Long, D. Clasas: A Key-Store for the Cloud, 
MASCOTS 2010 

[16] Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,               
Samarati, P. Encryption policies for regulating access to   
outsourced data. ACM TODS, 35,2, 2010. 

  

 


